

Engineering curricula modernization in renewable energy in Albanian Universities

ENGINE

Project reference No. 619338-EPP-1-2020-1-AL-EPPKA2-CBHE-JP

(Deliverable 2.2)

Updated BSc programs (at least 6 courses)

CONTENTS

1.BACHELOR COURSES OF POLYTECHNIC UNIVERSITY OF TIRANA (PUT)	
2.BACHELOR COURSES OF 'ALEKSANDER MOISIU' UNIVERSITY OF DURRES (UAMD)	
3.COURSES OF PROFESSIONAL COLLEGE OF TIRANA (KPT)	
4.BACHELOR COURSES OF UET	

*In total for this deliverable, we have 12 new courses and 12 updated courses.

The learning outcomes and syllabi of the courses of each partner are as follows.

1.BACHELOR COURSES OF POLYTECHNIC UNIVERSITY OF TIRANA (PUT)

The courses of PUT for existing relevant bachelor in study programs Electrical Engineering-profile Power System are as follows.

- 1. Power distribution network and the impact of RES (New compulsory bachelor level course)
- 2. Smart Grid Communications and Measurement Technology (New elective bachelor level course)
- 3. Application of the Smart Grid Technology (New elective bachelor level course)
- 4. Energy Efficiency & Positive Energy building (New elective bachelor level course)
- 5. Data Transmission Networks (New compulsory bachelor level course)
- 6. Energy Management Systems (New elective bachelor level course)

The learning outcomes of the courses of PUT are described in the table below.

No	Course	Knowledge	Skills	Competences
1.	Power distribution network and the impact of RES New compulsory bachelor level course	Gaining knowledge on various issues and impact that distribution system has to address for RES integration in the power system. Explain pertinent issues such as voltage fluctuation, voltage rise, voltage balance, loading, relay protection, and harmonics and their effect on the system. Discussion and clarification of the islanding issues, the stability and integrity of the distribution system.	Evaluation and analyze of the issues faced with the expansion and penetration of RES into the distribution and transmission system. Calculation and verification of relay settings	Identify the important issues affecting the distribution system as a result of RES penetration and coordinate the Project for mitigation of such issues and giving the appropriate solution. Knowing what for an employee must be trained to address appropriately issues regarding the RES penetration on distribution system.
2.	Smart Grid Communications and Measurement Technology New elective bachelor level course	Gaining a good understanding of Communication and Measurement for Monitoring, PMU, Smart Meters, and Measurements Technologies	 .Ability to simulate and, analyze through appropriate software: Operation and control communications from Supervisory 	The ability to identify and apply the most advanced solutions available to distribution and transmission utilities in order to reduce substation operating expenses by

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Explain the technical definition for Communication and Measurement. Knowing and discussing the basic equipment and standards order of selection of appropriate for Communication and Measurement in electric power system.	Control and Data Acquisition (SCADA) systems, how to collect data on substation operations; communication between substations and control centers; remote engineering access communications. Ability to analyze the role and function of PMU, smart meters	improving reliability and optimizing the integration of distributed energy resources Able to identify, select and apply technologies in order to ensure a more observable, controllable, automated and integrated grid Able to embed processing and digital communications on top of the analog power grid, with the resultant communications and measurements infrastructure capable of handling greater data volumes, and managing the greater data velocity. Knowing what for an employee must be trained to implement on site the appropriate for Communication and Measurement

 Application of the Smart Grid Technology New elective bachelor level course Application of the Smart Grid Technology New elective bachelor level course Application of the sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies. Gaining a good understanding of the smart grid application demonstrated projects of advanced metering, micro grid with renewable energy, approach for smart grid application Knowing the basic order of projects in the Smart Grid Environment. Explain the technical definition for the Smart Grid project 		-	-		
Technologyimplemented Projects of the challenges for the sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies.for a selected area of distribution systemproposed smart grid Project that can manage direct interaction and communication among consumers, households or companies, other grid users and energy suppliers.Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project.Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project.Ability to measure the load, current and to identify the correct switches to be used in a smart ProjectAble to justify the necessity for an upgraded electricity network to which two- way digital communication between supplier and consumer, intelligent metering and monitoring systems have been added.Knowing the basic order of projects in the Smart Grid Environment.Knowing the technical definition for theKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing t	3.	Application of the	Knowledge through	Ability to design a	Ability to introduce all
New elective bachelor level courseof the challenges for the sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies.distribution systemProject that can manage direct interaction and communication among consumers, households or companies, other grid users and energy suppliers.Gaining a good understanding of the smart grid application demonstrated projects of advanced metering, micro grid with renewable energy, approach for smart grid applicationAbility to calculate and simulate the load flow and voltage profile in a Smart Grid project.Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project.Ability to measure the load, current and to identify the correct switches to be used in a smart ProjectAbility to measure the load, current and to identify the correct switches to be used in a smart ProjectAbility to measure the load, current and to identify the correct switches to be used in a smart ProjectAbile to justify the necessity for an upgraded electricity network to which two- way digital communicationKnowing the basic order of projects in the Smart Grid Environment.Knowing the basic order of projects in the Smart Grid Environment.Knowing the technical definition for theKnowing the technical definition for theKnowing the technical definition for theKnowing the technical definition		Smart Grid	Case studies and	Smart Grid Project	benefit for a s <mark>pecific</mark>
New elective bachelor level coursethe sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies.Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project.manage direct interaction and communication among consumers, households or companies, other grid users and energy suppliers.Gaining a good understanding of the smart grid application demonstrated projects of advanced metering, micro grid with renewable energy, approach for smart grid applicationAbility to measure the load, current and to identify the correct switches to be used in a smart ProjectAbile to justify the necessity for an upgraded electricity network to which two- way digital communication between supplier and consumer, intelligent metering and monitoring systems have been added.Knowing the basic order of projects in the Smart Grid Environment.Knowing the basic order of projects in the Smart Grid Explain the technical definition for theKnowing what for an employee must be trained to implement on site the Smart Grid		Technology	implemented Projects	for a selected area of	proposed smart grid
bachelor level coursethe sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies.Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project.manage direct interaction and comsumers, households or companies, other grid users and energy suppliers.Gaining a good understanding of the smart grid application demonstrated projects of advanced metering, micro grid with renewable energy, approach for smart grid applicationAbility to measure the load, current and to identify the correct switches to be used in a smart ProjectAble to justify the necessity for an upgraded electricity network to which two- way digital communicationKnowing the basic order of projects in the Smart Grid Environment.Knowing the basic order of projects in the Smart Grid Environment.Knowing the technical definition for theKnowing the technical definitionKnowing the technical definition for theKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technical definitionKnowing the technica		Now elective	of the challenges for	distribution system	Project th <mark>at can</mark>
		New elective bachelor level	of the challenges for the sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies. Gaining a good understanding of the smart grid application demonstrated projects of advanced metering, micro grid with renewable energy, approach for smart grid application Knowing the basic order of projects in the Smart Grid Environment.	for a selected area of distribution system Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project. Ability to measure the load, current and to identify the correct switches to be used in a smart	proposed smart grid Project that can manage direct interaction and communication among consumers, households or companies, other grid users and energy suppliers. Able to justify the necessity for an upgraded electricity network to which two- way digital communication between supplier and consumer, intelligent metering and monitoring systems have been added. Knowing what for an employee must be trained to implement on
			definition for the		site the Smart Grid

asca

4.	Energy Efficiency &	To introduce the	Ability to appreciate	To be able to identify
	Positive Energy	concept and benefits	the significance and	the different
	building	of energy efficiency in	benefits of energy	opportunities for
	bullung	buildings.	efficiency in	improving the energy
	New elective bachelor level course	 buildings. To give an overview of the methodology used to determine the energy efficiency of buildings. To describe the different mechanisms for financing energy efficiency measures in buildings. To give a summary of legislative and policy tools that have been successful in promoting energy efficiency in buildings. Explain the technical definition for a positive energy building 	efficiency in buildings. Ability to calculate the thermal load of a building. Ability to calculate analyze and design the basic order of magnitudes of the energy consumption reduction when insulating the facades. Ability to perform cost benefit analyzes for different insulation materials to be used in a proposed Project for Energy Efficiency	improving the energy efficiency of buildings and the potential savings without sacrificing comfort levels. Ability to identify and apply the different mechanisms for financing energy efficiency measures. Ability to introduce and implement policies to facilitate energy efficiency in buildings in the country. Knowing what for an employee must be trained to implement on site the selected insulation material

ALBENECON ENGINEERING CONSULTANTS

National and Kapodistrian University of Athens

5.	Data Transmission Networks New compulsory bachelor level course	Gaining the most important basic concepts about technologies and protocols used in today's networks of data transmission, with special attention to the network architecture, network layers, elements and services of modern networks with packet switching, protocols and transport.	Ability to analyze and identify the basic order of projects about data transmission networks. Ability to perform, simulation with the appropriate software for the energy management system. Ability to design the network architecture, network layers elements and packet switching.	Ability to introduce and realize the control of home energy consumption and consumer participation on energy-efficient behavior. Emerging trends in this area. Ability to propose solution and implement Projects in respect of turning the existing networks in a modern network with the integration of data transmissions, interferences with the different network layers, adaption and integration of new technologies and protocols with the existing network.
6.	Energy Management Systems	Gaining a basic knowledge on Energy management (EM) systems, requirements for EM systems,	Ability to perform, simulation with the appropriate software for the energy management system.	Able to introduce and expand in practice the technical definition for EM systems, applications, and frameworks.

HELLENIC REPUBLIC National and Kapodistrian University of Athens

		•	
New elective	integration with home		Ability to introduce
bachelor level	automation systems.	Ability to evaluate and compare several EM systems	realize and implement
course	Explain the technical definition for the data		the communication technologies to provide customers with
	transmission networks		operational information
	Understanding EM		and control features
	systems, utilizing		and to turn them into
	advanced analytics		pro consumers
	and communication technologies to provide customers with operational information and control features, while ensuring ease of use, availability, security and privacy.		Knowing what for an employee must be trained to implement on site EM systems.

The syllabi of the courses in Bachelor in Electric Engineering Profile Power System are as follows:

Syllabus

1. Power distribution network and the impact of RES

Course topic

Bachelor in Electric Engineering Profile Power System

Number of credits

5 ECTS

.....

KU LEUVEN

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Course responsible

- Polytechnic University of Tirana
- Department of Electric Power System

Rajmonda Buhaljoti

Course lecturer

Andi Hida

Prerequisites

The student must have basic knowledge in the subjects of physics, mathematics, electrotechnics and renewable energy sources.

Learning outcomes

Upon successful completion of this course students should be able to:

- Gaining knowledge on various issues and impact that distribution system has to address for RES integration in the power system.
- Explain pertinent issues such as voltage fluctuation, voltage rise, voltage balance, loading, relay protection, and harmonics and their effect on the system.
- Discussion and clarification of the islanding issues, the stability and integrity of the distribution system.
- Evaluation and analyze of the issues faced with the expansion and penetration of RES into the distribution and transmission system.
- Calculation and verification of relay settings
- Identify the important issues affecting the distribution system as a result of RES penetration and coordinate the Project for mitigation of such issues and giving the appropriate solution.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

KU LEUVEN

• Knowing what for an employee must be trained to address appropriately issues regarding the RES penetration on distribution system.

<u>Abstract</u>

The main objective of the course is to introduce students to the impact of the integration of RES (renewable energy sources) in the energy system. The course covers aspects of calculation and verification of voltage parameters, protection of relays and harmonics in the system.

<u>Content</u>

Introduction. Renewable energy sources.

Expected energy production from different sources. Distribution of energy produced.

Network connection. Local control of distributed generation.

Distribution system performance. Impact of renewable energy sources. Energy Quality.

Overload and losses. Radial distribution networks. Surplus in distribution networks.

Losses. Case studies. Demand control. Renewable Energy Priority.

Changes in voltage level. Voltage Control in Distribution Systems. Choosing the overvoltage limit.

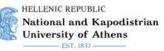
Energy quality problems. Rapid voltage fluctuations. Voltage imbalance. The best distribution system.

Harmonics. Their effects on the system. Example of measurement.

Protection. Impact of distributed generation. Overcurrent protection. Calculation of currents during faults.

Teaching methods

Face-to-face classes


Laboratory practice

<u>Assessment</u>

....

BENECON

🛛 🍋 cre thi dev

The course is evaluated 80% according to the final exam and 20% according to the results of controls and assignments.

Recommended reading

Literature lists

• Tomás Gómez San Román, José Pablo Chaves-Áila, Integration of Renewable and Distributed Energy Resources in Power Systems, 2020, MDPI

• Management Association, Sustainable Infrastructure: Breakthroughs in Research and Practice, 2020, IGI Global

Syllabus

2. Smart Grid Communications and Measurement Technology

Course topic

Bachelor in Electric Engineering Profile Power System

Number of credits

5 ECTS

Course responsible

Polytechnic University of Tirana

Department of Electric Powe System

Marialis Çelo

Course lecturer

Aldi Muçka

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Prerequisites

The student must have basic knowledge in the subjects of physics, mathematics and electrotechnics.

Learning outcomes

Upon successful completion of this course students should be able to:

Gaining a good understanding of Communication and Measurement for Monitoring, PMU, Smart
Meters, and Measurements Technologies

- Explain the technical definition for Communication and Measurement.
- Knowing and discussing the basic equipment and standards order of selection of appropriate for Communication and Measurement in electric power system.
- Ability to simulate and analyze through appropriate software:

Operation and control communications from Supervisory Control and Data Acquisition (SCADA) systems, how to collect data on substation operations;

Communication between substations and control centers;

Remote engineering access communications.

Ability to analyze the role and function of PMU, smart meters

• The ability to identify and apply the most advanced solutions available to distribution and transmission utilities in order to reduce substation operating expenses by improving reliability and optimizing the integration of distributed energy resources

• Able to identify, select and apply technologies in order to ensure a more observable, controllable, automated and integrated grid

• Able to embed processing and digital communications on top of the analog power grid, with the resultant communications and measurements infrastructure capable of handling greater data volumes, and managing the greater data velocity.

Knowing what for an employee must be trained to implement on site the appropriate for **Communication and Measurement**

Abstract

The objective of the course is to introduce students to the basics of Smart Grid technology and its use in renewable energy. The course covers technical aspects of metering systems and communication systems of Smart Grid technology. The course will provide knowledge on the construction and operation of intelligent energy meters (Smart meter), systems and their communication. Aautomatic Meter Reading (AMR) systems. Familiar with advanced metering infrastructures (AMI) and automated energy meter management systems. Knowledge of smart meters as well as communication and management technologies.

Content

Introduction to SMART metering systems and SMART networks

Computer intelligence its impact on the performance of the power system.

Communication protocols and standards

Overview of smart grid market manufacturers and brands

Definition of intelligent network operation based on performance and operation measures.

Typical smart grid architecture and component components functions.

Measuring devices and smart network communication

Monitoring, PMU and measurement technologies

Intelligent electricity meters (Smart meter), construction, types and functions.

Remote reading (AMR) systems of energy meters, topologies, architecture and functions.

Measurement data management (AMI) systems, topologies, architectures and functions.

GIS and google mapping systems, microgrid networks and smart grid networks.

.....

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Teaching methods

Face-to-face classes

Laboratory practice

Assessment

The course is evaluated 75% according to the final exam and 25% according to the results of controls and assignments.

Recommended reading

Literature lists

Janaka Ekanayake, Smart Grid Technology and Applications, Wiley, 2012, ISBN: 978-0-470-97409-4

Syllabus

3. Application of the Smart Grid Technology

Course topic

Bachelor in Electric Engineering Profile Power System

Number of credits

5 ECTS

Course responsible

Polytechnic University of Tirana

Department of Electric Powe System

Nike Shanku

Course lecturer

Olsi Karapici

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Prerequisites

The student must have basic knowledge in the subjects of physics, mathematics and electrotechnics.

Learning outcomes

Upon successful completion of this course students should be able to:

• Knowledge through Case studies and implemented Projects of the challenges for the sustainable development of Smart Grid including: electrical problems, human capacity, technology and political policies.

• Gaining a good understanding of the smart grid application demonstrated projects of advanced metering, micro grid with renewable energy, approach for smart grid application

- Knowing the basic order of projects in the Smart Grid Environment.
- Explain the technical definition for the Smart Grid project
- Ability to design a Smart Grid Project for a selected area of distribution system
- Ability to calculate and simulate the load flow and voltage profile in a Smart Grid project.

• Ability to measure the load, current and to identify the correct switches to be used in a smart Project

• Ability to introduce all benefit for a specific proposed smart grid Project that can manage direct interaction and communication among consumers, households or companies, other grid users and energy suppliers

• Able to justify the necessity for an upgraded electricity network to which two-way digital communication between supplier and consumer, intelligent metering and monitoring systems have been added.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

• Knowing what for an employee must be trained to implement on site the Smart Grid

....

KU LEUVEN

<u>Abstract</u>

The course aims to provide basic knowledge on smart grid technology in electrical systems. The main architectures of smart grid technology are provided at all levels of the power system from the consumer to power plants and power plants, to renewable sources of electricity. Components of smart networks. smart network security problems.

Content

Access to smart grids and the post-carbon economy

- The constituent elements of Intelligent Networks
- Intelligent Network Applications:
- o Government
- o Industry
- o Standardization
- **Activation Technologies**
- Communications in the Intelligent Network
- Network Architectures, Communications across Power Lines
- Network Architectures, Advanced Metering Infrastructure, Sensor Technologies.

Cyber security

- Enter false data
- Entering incorrect data
- Load modification
- Protection mechanisms

Confidentiality in Intelligent Networks

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Large-scale power systems

- Applications and challenges
- Phase measurement blocks
- Defect detection and self-repair systems

Social, political and regulatory issues.

• Roadmap for the Albanian Intelligence Network

Teaching methods

Face-to-face classes

Laboratory practice

Assessment

The course is evaluated 80% according to the final exam and 20% according to the results of controls and assignments.

Recommended reading

Literature lists

• Bernd M. Buchholz, Zbigniew Styczynski, Smart Grids – Fundamentals and Technologies in Electricity Networks, 1st Edition, Vieweg+Teubner Verlag, 2014, ISBN 13: 9783642451201

• Andres Carvallo, John Cooper, The Advanced Smart Grid: Edge Power Driving Sustainability, 2nd Edition, Artech House, 2015, ISBN-13: 9781608079643.

Syllabus

4. Energy Efficiency & Positive Energy Building

Course topic

Bachelor in Electric Engineering Profile Power System

Number of credits

5 ECTS

Course responsible

Polytechnic University of Tirana

Department of Electric Powe System

Rajmonda Buhaljoti

Course lecturer

Andi Hida

Prerequisites

The student must have basic knowledge in the subjects of physics, mathematics and electrotechnics.

Learning outcomes

Upon successful completion of this course students should be able to:

- To introduce the concept and benefits of energy efficiency in buildings.
- To give an overview of the methodology used to determine the energy efficiency of buildings.
- To describe the different mechanisms for financing energy efficiency measures in buildings.

To give a summary of legislative and policy tools that have been successful in promoting energy efficiency in buildings.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Explain the technical definition for a positive energy building

- Ability to appreciate the significance and benefits of energy efficiency in buildings.
- Ability to calculate the thermal load of a building.
- Ability to calculate analyze and design the basic order of magnitudes of the energy consumption reduction when insulating the facades.
- Ability to perform cost benefit analyzes for different insulation materials to be used in a proposed **Project for Energy Efficiency**
- To be able to identify the different opportunities for improving the energy efficiency of buildings and the potential savings without sacrificing comfort levels.
- Ability to identify and apply the different mechanisms for financing energy efficiency measures.
- Ability to introduce and implement policies to facilitate energy efficiency in buildings in the country.
- Knowing what for an employee must be trained to implement on site the selected insulation material

<u>Abstrac</u>t

The main objective of the course is to introduce students to the basics of energy efficiency in buildings, applying theory in practice. The course covers technical, legal, financial and practical aspects of energy efficiency in buildings. Importance and benefits of energy efficiency in buildings.

Content

Energy efficiency. Objectives.

Introduction to energy efficiency in buildings. Energy efficiency potential in buildings.

Design of energy efficient buildings. Energy efficient building technologies.

Key measures to improve energy efficiency. Use of renewable energy sources. Energy control and good management.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Implementing energy efficiency. Energy efficiency policies.

....

Setting goals and engaging stakeholders. Building codes and standards.

Energy efficient operation of the building. Measuring energy efficiency. Energy efficiency data and indicators.

Energy efficiency assessment. Numerous energy efficiency benefits.

Enabling investments in energy efficiency. Investing in energy efficiency. Enabling investment through policies. Enabling investments through project standardization.

Enabling investments through procurement. Enabling investments through financing, finance and fiscal instruments. Enabling investment through energy markets.

Teaching methods

Face-to-face classes

Laboratory practice

Assessment

The course is evaluated 80% according to the final exam and 20% according to the results of controls and assignments.

Recommended reading

Literature lists

Eng Hwa Yap, Energy Efficient Buildings, 2017, IntechOpen

Syllabus

5. Data Transmission Networks

Course topic

Bachelor in Electric Engineering Profile Power System

....

National and Kapodistrian

HELLENIC REPUBLIC

University of Athens

Number of credits

5 ECTS

Course responsible

Polytechnic University of Tirana

Department of Electric Powe System

Nike Shanku

Course lecturer

Aldi Muçka

Prerequisites

The student must have basic knowledge in the subjects of physics, mathematics and electrotechnics.

Learning outcomes

Upon successful completion of this course students should be able to:

• Gaining the most important basic concepts about technologies and protocols used in today's networks of data transmission, with special attention to the network architecture, network layers, elements and services of modern networks with packet switching, protocols and transport.

- Ability to analyze and identify the basic order of projects about data transmission networks.
- Ability to perform, simulation with the appropriate software for the energy management system.
- Ability to design the network architecture, network layers elements and packet switching.

• Ability to introduce and realize the control of home energy consumption and consumer participation on energy-efficient behavior. Emerging trends in this area.

• Ability to propose solution and implement Projects in respect of turning the existing networks in a modern network with the integration of data transmissions, interferences with the different network layers, adaption and integration of new technologies and protocols with the existing network.

Abstract

The course aims to provide basic knowledge on computer networks and data transmission from various devices and equipment of electrical installations and electrical networks. The aim of the course is to get acquainted with the different types and standards of data transmission networks from different devices used for supervision, control in power plants and installations and their storage and security.

Content

Introduction to communication and data transmission systems

Data communications, data networks and the Internet

TCP / IP network architecture and topologies and Ethernet-based applications.

Data transmission, concepts and terminology, Analog and digital transmission

Mobile telephony networks, working principle, first and third generation.

LANs, logins, LAN network topologies, LAN network protocols.

Wireless networks, access, technology and wireless network topologies.

Modulation and demodulation signal losses

Electric cable communications

Fiber optic communications and wireless communication systems

Data communications equipment, technology and their use in the electrical network

Communications protocols of industrial equipment

Teaching methods

Face-to-face classes

Laboratory practice

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Assessment

The course is evaluated 75% according to the final exam and 25% according to the results of controls and assignments.

Recommended reading

Literature lists

• William Stallings, Data and Computer Communications, Pearson Prentice Hall 2007, ISBN: 0-13-243310-9

• Behrouz A Forouzan, Data Communications and Networking, MC GRAW HIL, 2006, ISBN: 978-0070634145

Syllabus

6. Energy Management Systems

Course topic

Bachelor in Electric Engineering Profile Power System

Number of credits

5 ECTS

Course responsible

Polytechnic University of Tirana

Department of Electric Powe System

Marialis Çelo

Course lecturer

Klajdi Kamberi

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Prerequisites

The student must have basic knowledge in the subjects of physics, mathematics and electrotechnics.

Learning outcomes

Upon successful completion of this course students should be able to:

• Gaining a basic knowledge on Energy management (EM) systems, requirements for EM systems, integration with home automation systems.

• Explain the technical definition for the data transmission networks

• Understanding EM systems, utilizing advanced analytics and communication technologies to provide customers with operational information and control features, while ensuring ease of use, availability, security and privacy.

• Ability to perform, simulation with the appropriate software for the energy management system.

• Ability to evaluate and compare several EM systems. Able to introduce and expand in practice the technical definition for EM systems, applications, and frameworks.

- Ability to introduce realize and implement the communication technologies to provide customers with operational information and control features and to turn them into pro consumers
- Knowing what for an employee must be trained to implement on site EM systems.

<u>Abstract</u>

To give students an overview of the importance of energy and its conservation, management of energy systems, analysis and remote control of the system using communication technologies.

<u>Content</u>

Energy management systems (EMS), advantages, requirements and tasks of EM systems, the possibilities of their integration into the existing network.

Performance and engineering aspects of EMS operation, computer applications in power management.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

KU LEUVEN

Energy efficient technologies used in EMS, the role of EMS in controlling maximum demand, power factor and lighting. The energy saving potential of any technology.

Typical functions of EMS control center, system monitoring and security, minimum operating cost, minimum deviation from a specific operating point.

Power system control center: hardware structure, real-time grid computer system, SCADA performance.

Power system control center: software structure, data acquisition subsystem, real-time data diversity management, communication and interconnection system.

EMS control center: dispatcher operator activities, main characteristics of the operator activity.

A conceptual model of the activity of the dispatcher operator, requirements and trends in the activity of the dispatcher operator.

Implementation of the energy management system in the existing energy management system, features of the new system, hierarchical control concept, extended control and safety assessment.

EMS project management, implementation phases of a new control center, feasibility study, functional requirements and preliminary specifications, system development and integration, development and maintenance of EMS software.

EMS expert systems for the operation of the power system, security monitoring and control, expert system structure, possibilities and limits of expert systems, its applications.

Teaching methods

Face-to-face classes

Laboratory practice

Assessment

The course is evaluated 80% according to the final exam and 20% according to the results of controls and assignments.

HELLENIC REPUBLIC

....

KU LEUVEN

National and Kapodistrian

Recommended reading

Literature lists

Richard A. Panke, Energy Management Systems and Direct Digital Control, River Publishers, 2002.

Barney L. Capehart; Lynne C. Capehart; Paul J. Allen; David C. Green, Web Based Energy Information and Control Systems: Case Studies and Applications, River Publishers, 2005.

E. Handschin . A. Petroianu, Energy Management Systems , Springer, 1991.

Marvin T. Howell, Energy Centered Management: A Guide to Reducing Energy Consumption and Cost, River Publishers, 2015.

Klaus-Dieter E. Pawlik, Solutions Manual for Guide to Energy Management, River Publishers, 2016.

2.BACHELOR COURSES OF 'ALEKSANDER MOISIU' UNIVERSITY OF DURRES (UAMD)

The six courses of UAMD are as follows:

- 1. Wireless Systems
- 2. Renewable Energy Technologies
- 3. Alternative energy plants
- 4. Renewable Energy Sources
- 5. Basics of Energy Efficiency ("Construction Management" study program)
- 6. Basics of Energy Efficiency ("Air Conditioning Systems Specialist" study program)

The learning outcomes of the courses of UAMD are described in the following Table.

Course	Knowledge	Skills	Competences
Wireless Systems	At the end of the course, students will:	At the end of the course, students will:	At the end of the course, students will:
Updated <u>elective</u> professional level course, which	 understand the technical functioning and principles of various techniques; 	• design a Small	 show, autonomy and initiative to the implementation of new methods and planning rules
takes place in the "Computer networking specialist"	 equipment of Wireless systems and its implementation terrain. discuss on strong and 	Wireless network • follow thoroughly	through rolling out the network ensuring proper coverage in compliance with
specialist	weak points of types of	the	requested Grade of Service.

professional study	coverage to be	constructing	 manage a variety of traffic
program/ (6 ETCS)	implemented.	phases;	handling, coverage
	 explain the compliance of 	• test all the	situations and projects in
	each antenna in better	KPIs	using most recent
	solving the problems	requested for	equipment and the ways of
	mention for coverage.	the network.	coverage for different
	 classify under given 	On the other	terrains.
	constrain of distance and	side students	
	radiation the site	can:	
	 selections. list a number of antennas that can be suitable to be used in the realization of the requested coverage. 	 work with different types of antennas in compliance with the terrain diversity handle any problem related to quality especially of Call drop rate, level of coverage etc. evaluate and test all the other parameters 	
		requested for	

		the proper	
		coverage.	
Renewable	At the end of the course,	At the end of the	At the end of the course,
Energy	students will:	course, students	students will:
Technologies	• understand the technical	will:	• demonstrate innovation,
New elective	functioning and principles	• be able to	autonomy, scholarly to the
course, which	of various techniques of	design a low	development of new
takes place in the	renewable energy, and	power solar.	modelling and design rules
"Information	how these technologies		at the forefront of work or
Technology"	interact in larger systems.	• construct it	study contexts
bachelor study	• discuss on strong and	thoroughly.	including research in using
program/ (6 ETCS)	weak points of each	• test all the	solar energy for small
	power source	parameters	telecommunication sites
	explain the compliance of	requested for	such as repeaters, external
	each source in better	the proper	alarms boxes or micro
	solving the problems	functioning. On the other	antennas and in using wind
	mention in the working		
	order	side the	energy in macro telecommunication sites.
	 classify under given 	students can	manage complex technical
	constraints the utilization	• work with	and professional activities
	and conversion of one or	other types of	and projects in using new
	more renewable energy	row material	materials for supplying power
	resources.	such as	to small consumers
		biomass, etc.,	
		that produce	(equipment) belonging to industrial and house holders.
	according to the technical benefits based on	power and	industrial and house holders.
		compare the	
	resource availability,	efficiency	
	energy demand and	between	
	market conditions.	them.	
		• deal with its	
		proper	

HELLENIC REPUBLIC National and Kapodistrian University of Athens

		maintenance	
		ensuring the	
		output quality	
		 solve 	
		problems	
		related to	
		quality	
		requested in	
		order to	
		ensure	
		reliable	
		working	
		mode.	
Alternative	At the end of the course,	At the end of the	At the end of the course,
energy plants	students should:	course, students	students will:
	- understand and use for	will be able to:	
	problem solving the main		- demonstrate the ability to use
Updated <u>elective</u>	concepts of electric power	- evaluate and	critical thinking and problem-
professional level	calculations for one and	compare small	solving skills, how and when to
course, which	tree phase systems:	scale ren <mark>ewab</mark> le	apply renewable energy
takes place in the	complex power, power	energy projects	solutions
"Mechanic of	factor, power triangle,	using major	- manage the problems and
agricultural	power quality and	economic	obstacles associated with
industrial plants"	harmonic distortion.	measures of	implementation of renewable
professional study	- understand the main	pay-back period,	energy systems
program/ (6 ETCS)	concepts of heat engine	simple rate of	- demonstrate the
	and Carnot efficiency.	return, net	understanding and familiarity
	- calculate the efficiency of	present value,	with engineering and financial
	a fossil fuel steam cycle	internal rate of	aspects of projects
	power plant and its	return.	- demonstrate the
	pollution parameters.	- calculate wind	understanding and familiarity
		turbine	

-understand different	performance	with the regulatory aspects of
types of steam cycle plants	parameters	renewable energy projects
(base load and others) and	(efficiency,	
calculate the optimal mix	energy	
of combined cycle plants	produced,	
for a given load duration	capacity factor)	
distribution	for a turbine	
understand the concent of	with given	
- understand the concept of	power curve and	
distributed generation and	for a given	
know its main types.	location with	
- understand principle of	given wind	
work of micro-combustion	speed	
turbines and Stirling	distribution	
engines.	function	
- understand the concept of	-Calculate the	
fuel	major	
cells. Calculate efficiency,	paramete <mark>rs</mark> of	
fuel	sun mov <mark>eme</mark> nt,	
consumption and electric	solar ra <mark>diatio</mark> n,	
parameters of a simple fuel	and t <mark>racki</mark> ng	
cell	systems.	
- understand the concept of	-Design the	
micro hydro-electric	parameters of a	
systems. Calculate	consumer scale	
efficiency, and parameters	stand alone and	
of a micro hydro system.	grid connected	
Design a consumer micro	photovoltaic	
hydro installation for a	system for a	
given site and	, given site	
performance parameters	location and	

	- understand major	performance	
	concepts of wind energy.	specification.	
	- calculate air parameters at different conditions, impact of installation		
	height, wind power and average wind power		
	 know the operation and comparative analysis of different concentrating solar power systems understand concepts of nuclear power systems. understand concepts of geothermal and marine power 		
Renewable	systems. At the end of the course,	At the en <mark>d of t</mark> he	At the end of the course,
Energy Sources Updated <u>compulsory</u> <u>professional</u> level course, which takes place in "Electrical Technical"	students should: - understand the principles of operation of the broad spectrum of renewable energy sources; - explain basic characteristics of renewable energy supply (solar radiation,	course, students will be able to: - work with different devices and to apply basic methods for	 students will: manage the technical and professional activities for the renewable energy technologies; demonstrate the technical challenges for each of the renewable sources;

professional study	wind energy,	producing of	- manage the u <mark>se of</mark>
program/ (6 ETCS)	geothermal, etc.) and	different	renewable technologies for
	principles of related	energy	electricity generation in
	technical systems	sources	buildings as w <mark>ell as in publ</mark> ic
	(photovoltaic, wind,		and private institutions.
	hydroelectric power	- solve	
	generation, etc.).	problems	
	- discuss economic,	related to	
	technical, and	renewable	
	sustainability issues	energy	
	involved in the	applications	
	integration of renewable		
	energy systems.		
	- explain the impact on		
	the environment from		
	the use of different		
	sources of renewable		
	energy		
Basics of energy	At the end of the course,	At the end of the	- At the end of the course,
efficiency	students should:	course, students	students will:
,	- understand the application	will be able to:	
	of dynamic simulation		- manage the right materials
Updated	software for design of	-test the t <mark>herma</mark> l	and methods that realize a
compulsory	energy supply and climate	load of a	building with minimal energy
professional level	systems, and for evaluation	building and air	consumption.
course, which	of indoor environment and	durability;	- demonstrate the knowledge
takes place in the	energy efficiency	- define th <mark>e</mark>	and the skills for analyzing,
"Construction		right way to	selecting and designing
Management"	- discuss system solutions for	reduce energy	solutions for renewable energy
professional study	renewable energy	consumption	supply, heat storage, technical
program/ (8 ETCS)	production and heat storage		installations for air

National and Kapodistrian University of Athens

asca

- discuss system solutions for	through facade	conditioning, and the domestic
ventilation and tempering of	insulation.	water systems in buildings
rooms - system solutions for	- test the	based on requirements for
domestic hot water supply,	required	indoor environment and
sewerage and preparation of	capacity for	energy efficiency.
domestic hot water	renewable	
classify methods for sizing	energy supply	
- classify methods for sizing	and heat	
of ventilation, heating and	storage	
cooling	- test the	
- understand principles of	required	
natural ventilation	capacity for	
	technical	
- classify methods for sizing	installations for	
of central heating systems	ventilation,	
- understand functional	heating,	
principles of components of	cooling and	
air conditioning plants;	domestic hot	
filters, dampers, fans, ducts,	water	
pumps, valves, pipes, heat		
exchangers and control	- design system	
components	solutions for	
	renewable	
- discuss solutions for	energy supply,	
monitoring and control of air	heat storage,	
conditioning plants	ventilation,	
	tempering of	
	rooms, domestic	
	water supply,	
	sewerage and	
	the preparation	

Efficiencystudents should: - understandcourse, studentsstudents will: - manage the energy efficientUpdated compulsory professional level course, which- understandthe performance and energy efficiency in systems installed in buildings and transport, greater usage of energy efficient- course, students will be able to: - test- manage the energy efficient systems - demonstrateUpdated compulsory professional levelin buildings and transport, greater usage of energy efficient- demonstratetransport, greater usage of course, whichenergy efficient- demonstratetransport, greater usage of course, which- demonstratetransport, greater usage of course, which				
 Basics of Energy Ludar Work with dynamic simulation programs for dimensioning of energy supply and air conditioning systems, and evaluation of indoor climate and energy efficiency work independently and in interdisciplinary groups At the end of the course, students should: work independently and in interdisciplinary groups Basics of Energy At the end of the course, students should: understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of energy test the reduced energy consumed in 			of domestic hot	
Basics of Energy At the end of the course, students should: - work independently and in interdisciplinary groups Basics of Energy At the end of the course, students should: - work independently and in interdisciplinary groups Updated compulsorv professional level course, students which installed in buildings and transport, greater usage of course, which installed in buildings and in transport, greater usage of course, which installed in buildings and the energy efficiency At the end of the course, systems installed in buildings and in transport, greater usage of consumed in transport, greater usage of energy At the end of the energy efficient is systems installed in buildings and it many is the energy efficient is students in the energy efficient is the energy efficient is student in transport, greater usage of energy At the energy efficient is systems installed in buildings and it many is the energy efficient is the energy is the energy efficient is the energy is the energy efficient is the energy efficient is the energy is the energ			water	
Basics of Energy At the end of the course, students should: - work independently and in interdisciplinary groups Basics of Energy At the end of the course, students should: - work independently and in interdisciplinary groups Updated compulsorv professional level course, students which installed in buildings and transport, greater usage of course, which installed in buildings and in transport, greater usage of course, which installed in buildings and the energy efficiency At the end of the course, systems installed in buildings and in transport, greater usage of consumed in transport, greater usage of energy At the end of the energy efficient is systems installed in buildings and it many is the energy efficient is students in the energy efficient is the energy efficient is student in transport, greater usage of energy At the energy efficient is systems installed in buildings and it many is the energy efficient is the energy is the energy efficient is the energy is the energy efficient is the energy efficient is the energy is the energ				
Basics of Energy At the end of the course, students should: - work independently and in in interdisciplinary groups Basics of Energy At the end of the course, students should: - work independently and in in interdisciplinary groups Updated - understand the performance and energy efficiency in systems installed in buildings and professional level transport, greater usage of course, which energy efficient At the end of the course, students will be able to:				
Basics of Energy At the end of the course, students should: Image the energy efficient systems Professional level Image the energy efficient systems Image the energy Image the energy Image the energy Image the energy Image the energy Image the energy Image the energy			-	
Basics of Energy At the end of the course, students should: - work independently and in interdisciplinary groups Basics of Energy At the end of the course, students should: - understand the performance and energy efficiency Updated compulsory - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of energy At the end of the course, students will: - understand the performance and energy efficiency - test the reduced energy efficient systems installed in buildings and transport, greater usage of energy - test the reduced energy efficient systems installed in buildings and transport, greater usage of energy				
Basics of Energy At the end of the course, students should: - work independently and in in interdisciplinary groups Basics of Energy At the end of the course, students should: - understand the performance and energy efficiency At the end of the course, students should: At the end of the course, students should: At the end of the course, students will be able to: - manage the energy efficient systems installed in buildings and transport, greater usage of course, which energy efficiency - test the reduced energy efficiency - demonstrate the energy efficiency on systems installed in buildings and transport, greater usage of course, which energy efficient - demonstrate the energy efficiency on systems installed in buildings and transport, greater usage of course, which energy efficient				
and air conditioning systems, and evaluation of indoor climate and energy efficiencyBasics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, students will be able to: - test the reduced energy consumed in installed in buildings and transport, greater usage of energyAt the end of the course, course, students will be able to: - test the reduced energy consumed inAt the end of the course, students will: - manage the energy efficient systems - demonstrate the energy efficiency / conservation methods available for energy			dimensioning of	
Basics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, consumed in consumed inAt the end of the course, students course, students will be able to: - test the reduced energy consumed inAt the end of the course, students will: - manage the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy			energy supply	
systems, and evaluation of indoor climate and energy efficiencysystems, and evaluation of indoor climate and energy efficiency- work independently and in interdisciplinary groups- work independently and in interdisciplinary groupsBasics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and professional level course, whichAt the end of the course, students should: - test the reduced energy consumed inAt the end of the course, students will: - manage the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy			and air	
evaluation of indoor climate and energy efficiency- work independently and in interdisciplinary groupsBasics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, students and compulsory efficiencyAt the end of the course, students the energy efficiencyUpdated compulsory professional level course, whichAt the end of the in performance and energy efficiencyAt the end of the course, students the energy efficiencyUpdated compulsory professional level course, whichAt the end of the energy efficiencyAt the end of the course, students			conditioning	
Indoor climate and energy efficiency-work independently and in interdisciplinary groupsBasics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, students will be able to: - test reduced energy energy consumed in energy efficiencyAt the end of the course, students will be able to: - test reduced energy energy energy efficiencyAt the end of the course, students will: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, students will be able to: - test reduced energy consumed inAt the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy			systems, and	
Basics of Energy EfficiencyAt the end of the course, students should: - understand professional level course, whichAt the end of the course, students should: - understand transport, greater usage of energy efficientAt the end of the course, students should: - understand transport, greater usage of energy course, whichAt the end of the course, students should: - understand transport, greater usage of energy consumed inAt the end of the course, students on the course, students students students will be able to: - test reduced energy consumed inAt the end of the course, students students will: - manage the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy			evaluation of	
Basics of Energy EfficiencyAt the end of the course, students should: - understand professional levelAt the end of the course, students should: - understand transport, greater usage of course, efficientAt the end of the course, students the energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiencyAt the end of the course, students the energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiencyAt the end of the course, students will be able to: - test energy consumed inAt the end of the course, students energy efficiencyAt the end of the course, students will be able to: - demonstrate the energy efficiency consumed in			indoor climate	
Basics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of energyAt the end of the course, students - test energy consumed inAt the end of the course, students will - manage the energy efficient systems - demonstrate the energy efficiency in systems onsumed in			and energy	
Basics of Energy EfficiencyAt the end of the course, students should: - understand efficiency in systems installed in buildings and transport, greater usage of course,At the end of the consumed in interdisciplinary groupsAt the end of the course, students course, students - whichAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the consumed in energyAt the end of the course, students will be able to: - test energy consumed in methods available for energy			efficiency	
Basics of Energy EfficiencyAt the end of the course, students should: - understand performance and energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the consumed inAt the end of the course, students will be able to: - test energy consumed in			- work	
Basics of Energy EfficiencyAt the end of the course, students should: - understand performance and energy efficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the consumed inAt the end of the course, students will be able to: - test energy consumed in			independently	
Basics of Energy EfficiencyAt the end of the course, students should: - understand the performance and energy efficiency in systems installed in buildings and transport, greater usage of course, whichAt the end of the course, students will be able to: - test the reduced energy consumed inAt the end of the course, students will: - manage the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy			and in	
Basics of Energy EfficiencyAt the end of the course, students should: - understand performance and energy efficiencyAt the end of the course, students will be able to: - test reduced energy compulsory professional level course, whichAt the end of the course, students reduced energy efficiencyUpdated compulsory professional level course, whichAt the end of the course, students energy efficientAt the end of the course, students will be able to: - test reduced energy consumed in methods available for energy			interdisciplinary	
Efficiencystudents should: - understand performance and energy efficiency in systems installed in buildings and professional levelcourse, students will be able to: - test reduced energy consumed instudents will: - manage the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy			groups	
- understandthe performance and energy efficiencywill be able to:- manage the energy efficientUpdated compulsory professional level course, which- installed in buildings and transport, greater usage of efficient- testthe reduced energy consumed in- demonstratethe energy efficiency	Basics of Energy	At the end of the course,	At the end of the	At the end of the course,
Updatedperformance and energy efficiency in systems installed in buildings and transport, greater usage of course, which- manage the energy efficient systems - test energy consumed in consumed in- manage the energy efficient reduced energy consumed in- manage the energy efficient systems - demonstrate the energy efficiency /conservation methods available for energy	Efficiency	students should:	course, st <mark>udent</mark> s	students will:
Updated compulsory professional levelperformance and energy efficiency in systems installed in buildings and transport, greater usage of course, which- test test the systems energy efficientsystems educed energy consumed in- test reduced energy consumed in- test the reduced energy consumed in- test the systems energy efficiency- test reduced energy efficiency- test reduced energy efficiency- demonstrate the energy efficiency		- understand the	will be able to:	
Updatedefficiency in systems installed in buildings and transport, greater usage of course, which- testthe systems reduced energy consumed insystems - demonstrate the energy efficiency /conservation methods available for energy		performance and energy		
compulsoryinstalled in buildings and transport, greater usage of course, whichreduced energy efficient- demonstrate efficiency- demonstrate efficiencyprofessional course, whichenergy efficient- demonstrate energy consumed in- demonstrate efficiency- demonstrate energy efficiency	Updated			systems
professional level transport, greater usage of consumed in energy /conservation / consumed in methods available for energy	•			- demonstrate the energy
course, which energy efficient consumed in methods available for energy		-		
	-	, , , , , ,		methods available for energy
takes place in "Air technologies the case of use reduction in residential and	takes place in "Air		the case of	
Conditioning Insulated Commercial settings	Conditioning	5		
buildings or			buildings or	

HELLENIC REPUBLIC National and Kapodistrian University of Athens

> asca Adjencia e Sigurium te

Systems	- understand basic areas	from the use	- demonstrate energy savings
Specialist"	of energy efficiency and	of other	and environmental impacts for
professional study	conservation methods.	energy	most energy efficiency
program/ (8 ETCS)	 explain the proper usage 	efficient	methods
professional study	 conservation methods. explain the proper usage of the equipment necessary to gather energy efficiency data. explain the energy conservation measures pertaining to HVAC systems, building equipment, building envelope, sustainable building design and electrical systems. explain the math and science principles used to design, develop, test, and supervise production/construction energy efficiency and conservation methods. classify the various types of energy suppliers and methods of fuel acquisition. understand basic engineering principles and physical laws that 	energy efficient methods test conservation methods used to reduce energy consumption in the built environment. work with residential and commercial objects for implementing energy savings measures. work with of energy monitoring and measuring equipment used for energy auditing.	most energy efficiency methods - demonstrate the appropriate usage of energy monitoring and measuring equipment commonly used by energy specialists and energy auditors - use, maintain and serve the
	they will use in their education and/or	 solve problems with 	
	,	•	
	profession.	energy savings	

	and	
	determining	
	environmental	
	impacts of	
	these energy	
	saving	
	methods	

The syllabi of the courses are as follows:

Syllabus

1. "Wireless Systems"

Course topic:

Fundamental of wireless communication, models of systems wireless systems and networks

Duration:

45 learning hours

Participants of the course:

The course is recommended for students of professional study program "Computer networking specialist", who are interested in gaining an overview of wireless systems.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Educational background:

High school

KU LEUVEN

- Course responsible:
- Aleksander Moisiu University Durrës
- Information Technology Department
- Dr. Fatmira Prodani
- Course lecturers:
- Dr. Frida Gjermen
- Educational prerequisites
- Fundamental knowledge in Energy Sources

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge

- Understand the purpose and principles of Wireless systems and its implementation terrain.
- Explain the compliance of each source in better solving the problems mention in the working order;

Skills

- Design a small Wireless network
- Follow all the constructing phases;
- Use different types of antennas in complience with the terrain diversity
- Evaluate and test all the parameters requested for the proper coverage;

Competence

• Demonstrate innovation, autonomy, scholarly to the development of new

KU LEUVEN

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

modelling and design rules through performing proper network coverage in compliance with requested Grade of Service.

Abstract

This course presents the fundaments of Wireless systems, network roll-out and maintenance. Planning and implementation of a small network using different types of antennas according to the terrain. Latest development in Wireless technology will be explained in details as well.

Content

Part one: Ι.

Wireless Communication: Introduction, Types and Applications. *

Modern Wireless Comunication Systems: 2G cellular networks, 3G, wireless local area networks (WLANs), Bluetooth and personal area networks (PANs).

Radio and propagation model with path-loss. Multipath channel characteristics.

• Basic features of mobile communication. Cellular coverage, interference between channels. Use of codes.

Signal processing and adaptation for communication, interference avoidance techniques, and detection of multiple users.

Client-server model in mobile systems. Peer-to-peer and Ad-Hoc model in mobile systems Addressing and routing in Ad-Hoc mobile networks

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

- Practical planning of a mobile system. Code planning. Intermediate Exam
- II. Part two:
- Multiple Access Modes: FDMA, TDMA, CDM, SDMA and OFDM.
- Milticarrier Access Mode: CDMA (MC-CDMA). Metodat e aksesit te rastësishëm. ٠
- End-to-end performance on wireless mobile systems.

....

- Other wireless systems: IEEE 802.11 WLAN (WI-FI) si dhe WI-MAX.
- Wireless Area Networs(WANs). Other wireless technology: GSM, UMTS, CDMA-2000.
- LTE (Long Term Evolution). MIMO Channels. Space-time coding.
- Prepare a course assignment in wireless network planning using the method of directional antennas. Code planning.
- Presentation of the course assignment using. Final Exam

Teaching methods

Consists of presentation in the class, practical and video demonstration. In case of on-line video of demonstration of some process, video of equipment in clean room etc. will be used.

Assessment

The course grade consists of these components:

40% – Intermediate exam

- 50% Final exam
- 10% Duty course

Recommended reading

- Wireless communications, Andrea Goldsmith, Stanford University
- Wireless Communications Systems Design, Haesik Kim
- Wireless Communications and networking , Williant Stallings
- Mobile Wireless Communications. Mischa Schwartz. Paperback (2013) ISBN: 9781107412712. Cambridge University Press.

Syllabus

2. "Renewable Energy Technology"

Course topic:

Use of Renewable Energy Sources in the existing technologies

Duration:

45 learning hours

Participants of the course:

The course is recommended for students not majoring in the field, who are interested in gaining an overview of renewable energy systems. Bachelor degree students in Information technology or Information Systems, and others.

Educational background:

High school

Course responsible:

Alexander Moisiu University - Durrës

Information Technology Department

Dr. Fatmira Prodani

Course lecturers:

Dr. Nikollaq Terezi

Educational prerequisites

Fundamental knowledge in Energy Sources

HELLENIC REPUBLIC National and Kapodistrian **University of Athens**

BENECON

Universiteti

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge

• Understand the technical functioning and principles of various techniques of renewable energy

• Explain the compliance of each source in better solving the problems mention in the working order;

Skills

- Design a low power solar cell plant
- Construct it thoroughly and;
- Test all the parameters requested for the propoer functioning;

Competence

• Demonstrate innovation, autonomy, scholarly to the development of new

modelling and design rules through performing the design of power solar cell plant.

<u>Abstract</u>

Building on the historical development of energy sources, this course offers an insight into renewable energy sources, and the existing technologies to use them. It also looks to present the framework of renewable energy technology, as well as social and ecological aspects from a global point of view.

<u>Content</u>

III. Part one:

1. Fundamentals (historical overview, power plant fundamentals, climate, energy consumptions and forecasts, energy economics, electricity control, fossil and nuclear energy)

2. Energy from Biomass (properties of biomass, biomass potentials, fuel properties, heat production, power production by means of combustion, power production by means of gasification, biogas production by means of anaerobic fermentation)

3. Geothermal Energy (potential, exploitation, direct utilization, central heating, district heating, deep geothermal systems, power generation, combined heat and power, economic aspects, risks)

4. Hydropower (hydrodynamics of water power, pumped storage power plants, examples of power plants and turbines, ocean current turbines)

IV. Part two:

1. Solar Thermal Energy (basics, collectors and concentrators, thermodynamic cycles, heat transfer fluids)

2. Photovoltaics (solar radiation, introduction to solar cells, technology of solar cells, application of solar cells)

3. Wind Energy (basic facts, introduction to wind turbine aerodynamics, the wind resource, wind turbine types, configurations, components)

Teaching methods

Consists of presentation in the class, practical and video demonstration. In case of on-line video of demonstration of some process, video of equipment in clean room etc. will be used.

Assessment

The course grade consists of these components:

40% – Intermediate exam

50% – Final exam

10% - Duty course

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Recommended reading

- Chen, G.; Andries, J.; Spliethoff, H.; Fang, M.; van de Enden, P. J.: Biomass gasification integrated with pyrolysis in a circualting fluidised bed. Solar Energy 76 (1-3), 2004, 345--349

- Wilhelm, S.; Fendt, S.; Spliethoff, H.: CFD Modeling of Biomass Entrained Flow Gasification: Influence of the Devolatilization Model on the Overall Gasification Process. European Biomass Conference & Exhibition, 2021

- Kahlert, S.; Spliethoff, H.: Investigation of Different Operation Strategies to Provide Balance Energy With an Industrial Combined Heat and Power Plant Using Dynamic Simulation. Journal of Engineering for Gas Turbines and Power 139 (1), 2016,

- Irl, M.; Lambert, J.; Wieland, C.; Spliethoff, H.: Development of an Operational Planning Tool for Geothermal Plants With Heat and Power Production. Journal of Energy Resources Technology 142 (9), 2020

- Ostermeier, P.; Vandersickel, A.; Spliethoff, H.: Thermochemische Energiespeicher für Industrie und Kraftwerke. Book: Fachkongress SolarChemieR, 2019

- Buttler, A.; Dinkel, F.; Franz, S.; Spliethoff, H.: Variability of wind and solar power – An assessment of the current situation in the European Union based on the year 2014. Energy 106, 2016, 147-161

- Vandersickel, A.: Advanced thermal storages - towards higher energy densities, long term storage and broader operating ranges. shc solar update newsletter 68, 2018, 12-14

Syllabus

3. "Renewable Energy Sources"

Course topic

Renewable energy technologies

Duration:

60 learning hours

Participants of the course:

Electrical technical students (2-year professional program)

Educational background:

High school

Course responsible

Aleksander Moisiu University, Durres

Professional Studies Faculty,

Department of Marine and Engineering Sciences,

Dr. Alma Golgota

Course lecturer / tutor

Msc. Stela Sefa

Educational Prerequisites

General knowledge in the field of energy

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

• to understand the principles of operation of the broad spectrum of renewable energy technologies;

• to explain basic aspects of renewable energy supply presenting fundamental characteristics of the resource base (solar radiation, wind energy, geothermal, etc.) and principles of related technical systems (photovoltaic, wind, hydroelectric power generation, etc.).

• discuss economic, technical, and sustainability issues involved in the integration of renewable energy systems.

• explain the impact on the environment from the use of different sources of renewable energy

Skills:

- to solve problems related to renewable energy applications
- to work with different devices and applying basic methodology for evaluating the use of different energy sources

Competence:

- manage the technical and professional activities for the renewable energy technologies;
- to demonstrate the technical challenges for each of the renewable sources;

• to manage the use of renewable technologies for electricity generation in buildings as well as in public and private institutions.

Abstract

The actual energy resources and requests of the world will be surveyed and renewable energy scenarios that are technologically feasible and economically viable for the future will be investigated. Students will evaluate the practical possibilities and limitations of renewable energies and compare it with conventional carbon-based energy systems. The training course will give the students a full understanding of the basic concepts of energy, mechanical work and Heat and the science underpinning RES.

Content

1. Introduction

Global resources, Resources and requests of energy in the world; future renewable energy scenarios. Hydrocarbon stocks. Carbon footprint and taxes. Energy usage monitoring and recovery. Electricity

generation: cost per unit: nuclear, oil, hydro, biomass etc. Nett benefit analysis: production cost versus energy benefit. Insulation. Efficient use of electricity - CFL bulbs, LEDs etc.

2. Wind Power

Turbine design: single phase versus three phase. Connecting to the national grid. Wind maps. Noise considerations, efficiency and load consideration. Battery storage.

3. **Ocean Power**

Physics of waves. Wave maps. Generation capacity. Material specification and turbine design. Operating environment. Safety and maintenance.

4. Solar Power

Physics of solar energy. Solar water heating, principles and technologies of photovoltaic cells (PV) and solar-thermal generation of electricity. Thermal panels versus evacuated tube. Science of PV technologies (silicon, thin film, organic, III-V, CPV, etc)

5. Geothermal

Principle of operation and design considerations. Heat pumps and heat transfer, horizontal versus vertical geometry. Performance specifications.

6. **Bio-fuels**

Varieties of bio-fuels. Calorific values of grasses, wood chip. etc.

7. **RES modelling**

Overview of approaches to RES modelling, modelling principles, sample data sets (e.g. JRC solar irradiance), example modelling tools: PVGIS, RET Screen, etc

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Teaching methods

The theoretical part of the course is presented in the classroom with power point presentation

The practical work of the course is represented with exercises and demonstrations.

....

Assessment

The course grade consists of these components:

40% – Intermediate exam

50% – Final exam

10% - Duty course

Recommended reading

1. Ahmad Azar, Nashwa Kamal (2021): Renewable Energy Systems

Modelling, Optimization and Control, 1st Edition, eBook ISBN: 9780128203989

2. John Twidell (2021): Renewable Energy Resources, 4th Edition, Published by Routledge,

ISBN 9780415633581

3. Pankaj Pathak , Rajiv Ranjan Srivastava (2021): Alternative Energy Resources: The Way to a Sustainable Modern Society, 1st edition, Published by Springer, ISBN-10 : 3030579220, ISBN-13 : 978-3030579227

4. Edward S. Cassedy, Peter Z. Grossman (2017): Introduction to Energy: Resources, Technology, and Society, 3rd edition ,Published by Cambridge University Press, ISBN-10 : 1107605040, ISBN-13 : 978-1107605046.

Syllabus

4. "Basics of Energy Efficiency"

Course topic

Energy efficiency of building conditioning systems

HELLENIC REPUBLIC National and Kapodistrian University of Athens EST, 1837

Duration:

- 90 learning hours
- Participants of the course:

Conditioning systems specialist students (2-year professional program)

Educational background:

High school

Course responsible

Aleksander Moisiu University, Durres

Professional Studies Faculty,

Department of Marine and Engineering Sciences,

- Dr. Alma Golgota
- Course lecturer / tutor

Msc. Stela Sefa

Educational Prerequisites

General knowledge in the energy field

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

to understand the performance and energy efficiency in systems installed in buildings, greater usage of energy efficient technologies

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

to understand basic areas of energy efficiency and conservation methods.

- to explain the proper usage of the equipment necessary to gather energy efficiency data.
- to explain the energy conservation measures pertaining to HVAC systems, building
- o equipment, building envelope, sustainable building design and electrical systems.
- to explain the math and science principles used to design, develop, test, and supervise
- production/construction energy efficiency and conservation methods.
- to classify the various types of energy suppliers and methods of fuel acquisition.
- to understand basic engineering principles and physical laws that they will use in their education and/or profession.
- to understand various energy resources, technologies and management fundamentals, and capable in addressing the present and potential future energy problems.

Skills:

- to test the reduced energy consumed in the case of insulated buildings or from the use of other energy efficient methods
- to test conservation methods used to reduce energy consumption in the built environment.
- to work with residential and commercial facilities for opportunities to employ these energy saving measures.
- to work with of energy monitoring and measuring equipment used for energy auditing.
- to solve problems with energy savings and determining environmental impacts of these energy saving methods
- to work with different devices and applying basic methodology for evaluating the use of different energy sources

Competence:

- 2 to manage the energy efficient systems
- 2 to demonstrate the energy efficiency /conservation methods available for energy use
- reduction in residential and commercial settings.
- to demonstrate energy savings and environmental impacts for most energy efficiency
- methods in order to identify and assess energy conservation opportunities.

to demonstrate the appropriate usage of energy monitoring and measuring equipment commonly used by energy specialists and energy auditors

- use, maintain and serve the energy efficient systems
- Ito manage the use of renewable technologies for electricity generation in buildings

Abstract

The material focuses on technical aspects related to the overall topic of energy efficiency in building systems. It aims at increasing trainees' knowledge, skills and capacities regarding technical aspects related to EE in buildings, with the specific focus on integration of different solutions, choosing most optimal scenarios, ensuring efficient monitoring and involving building users in the processes.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Content

- 1. Introduction to energy efficiency in buildings
- 2. How to use energy more efficiency
- 3. Basic characteristics of energy Saving
- 4. Energy audit and energy performance
- 4.1 Walk-through audit

....

KU LEUVEN

- 4.2 Utility cost analysis
- 4.3 Standard energy audit
- 4.4 Detailed energy audit
 - 5. Energy using products
 - 6. Energy retrofitting of the buildings.
 - 6.1 Building envelope
 - 6.2 Heating and cooling
 - 6.3 System airflow
 - 6.4 System use of controlling central control system
 - 6.5 Boiler plant
 - 6.6 Chilled and hot water circulation
 - 6.7 Plant general
 - 6.8 Domestic hot water
 - 6.9 Lighting
 - 6.10 Appliances
 - 7: Installation of RES
 - 7.1 Solar power
 - 7.1.1 Solar energy
 - 7.1.2 Photovoltaic systems
 - 7.1.3 Solar thermal
 - 7.1.4 Solar energy in public buildings

HELLENIC REPUBLIC National and Kapodistrian University of Athens

cre thi dev

- 7.2 Geothermal power
 - 7.2.1 Heat pumps
- 7.3 Biomass
 - 7.3.1 Biomass potentials
- 7.4 Wind power
- 7.5 Hydro power
- 8: Choosing most optimal EE improvement scenario for a specific building
- 9: Integration of technical measures with each other and with other types of EE solutions

Teaching methods

The theoretical part of the course is presented in the classroom with power point presentation

The practical work of the course will be carried out with lab equipment demonstrations

Assessment

The course grade consists of these components:

40% – Intermediate exam

50% – Final exam

10% - Duty course

Recommended reading

1. Daniel Martinez, Ben Ebenhack, Travis Vagner (2019): Energy efficiency (Concepts and calculations), first edition, ISBN: 9780128121115;

2. Umberto Desideri, Francesco Asdrubali (2018) : Handbook of Energy Efficiency in Buildings, ISBN: 9780128128183;

3. Mehmet KanoğluYunus A. Çengel (2020): Energy Efficiency and Management for Engineers, 1st Edition, McGraw-Hill Education, ISBN: 9781260459098;

4. Jacob J. Lamb and Bruno G. Pollet (2020): Energy-smart buildings : design, construction and monitoring of buildings for improved energy efficiency, Institute of Physics (Great Britain), publisher.

Syllabus

5. "Alternative energy plants"

Course topic

Renewable energy systems

Duration:

90 learning hours

Participants of the course:

Mechanics of agricultural industrial plants (2-year professional program)

Educational background:

High school

Course responsible

Aleksander Moisiu University, Durres

Professional Studies Faculty,

Department of Marine and Engineering Sciences,

Dr. Alma Golgota

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Course lecturer / tutor

Dr. Ing Eli Vyshka / Msc.Ing Luiza Lluri

Educational Prerequisites

General knowledge in the field of energy

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

- Understand and use for problem solving the main concepts of electric power calculations for one and tree phase systems: complex power, power factor, power triangle, power quality and harmonic distortion.

- Understand the main concepts of heat engine and Carnot efficiency.

Calculate the efficiency of a fossil fuel steam cycle power plant and its pollution parameters.

- Understand different types of steam cycle plants (base load and others) and calculate the optimal mix of combined cycle plants for a given load duration distribution
- Understand the concept of distributed generation and know its main types.

Understand principle of work of micro-combustion turbines and Stirling engines.

- Understand the concept of fuel cells. Calculate efficiency, fuel consumption and electric parameters of a simple fuel cell

- Understand the concept of micro hydro-electric systems. Calculate efficiency, and parameters of a micro hydro system. Design a consumer micro hydro installation for a given site and performance parameters

- Understand major concepts of wind energy. Calculate air parameters at different conditions, impact of installation height, wind power and average wind power

- Know the operation and comparative analysis of different concentrating solar power systems

- Understand concepts of nuclear power systems.

- Understand concepts of geothermal and marine power systems.

Skills:

- Evaluate economic efficiency and compare small scale renewable energy projects using major economic measures of pay-back period, simple rate of return, net present value, internal rate of return.

- Calculate wind turbine performance parameters (efficiency, energy produced, capacity factor) for a turbine with given power curve and for a given location with given wind speed distribution function

- Calculate the major parameters of sun movement, solar radiation, and tracking systems.

- Design the parameters of a consumer scale stand alone and grid connected photovoltaic system for a given site location and performance specification.

Competence:

- demonstrate an ability to use critical thinking and problem-solving skills to evaluate

business energy use and how and when to apply renewable energy solutions

- demonstrate an understanding of, and assess the obstacles associated with implementation of renewable energy systems

- demonstrate an understanding and familiarity with engineering and financial aspects of projects

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

KU LEUVEN

- demonstrate an understanding and familiarity with the regulatory aspects of renewable energy projects

Abstract

The training material focuses in the various sources of alternative energy including wind, solar, and biomass as potential sources of energy and investigates the contribution they can make to the energy profile of the nation. The technology used to harness these resources will be presented. Discussions of economic, environment, politics and social policy are integral components of the course.

Content

- 1. Introduction. Fundamentals of electric power
- o Electric energy in the world
- o Power factor, Complex power, power triangle.
- o Three-phase systems.
- o Synchronous generators.
- o Power quality
- 2. The basic conventional electric power industry
- Regulatory side of electric power
- Heat engines. Carnot efficiency
- Types of conventional power plants (steam-cycle, combustion gas turbines, combined cycle power plants, nuclear power plants)

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

- Economically optimal mix of power plants
- Transmission and distribution. Grid stability. Losses in the transmission line

....

KU LEUVEN

- 3. **Energy economics**
- 4. Distributed generation. Various renewable energy systems
- Intro to distributed generation 0
- Micro-combustion turbine, sterling engine 0
- Fuel cells 0
- Micro-hydro 0
- Wave power 0
- Tidal power 0
- **Biomass & biogas** 0
- Geothermal power 0
- 5. Wind power systems
- Power in the wind. 0
- Wind turbine performance 0
- Average power of the wind 0
- Wind turbine energy production 0
- Wind farms, wind economics, environmental impact 0
- Solar energy systems 6.
- the solar resource 0
- 0 Concentrating solar power technologies
- Photovoltaic cells 0
- 0 Photovoltaic systems

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

7. Smart grid

Teaching methods

The theoretical part of the course is presented in the classroom with power point presentation

The practical work of the course is represented with exercises and demonstrations

Assessment

The course grade consists of these components:

40% – Intermediate exam

50% – Final exam

10% - Duty course

Recommended reading

1. Ramesh C Bansal and Ahmed F Zobaa (2021) : Handbook of Renewable Energy Technology & Systems, ISBN 978-1-78634-904-0;

2. Hoboken, NJ : John Wiley & Sons (2017): Alternative energy systems and applications, Second Edition, 9781119109228 1119109221 9781119109235 111910923X;

3. Bent Sorensen (2017) : Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning 5th Edition, ISBN-10 : 0128045671, ISBN-13 : 978-0128045671;

4. Eduardo Rincón-Mejía, Alejandro de las Heras (2020): Sustainable Energy Technologies, Published to CRC Press, ISBN 9780367572679.

Syllabus

6. "Basics of Energy Efficiency"

Course topic

Energy efficiency in buildings

BENECON

HELLENIC REPUBLIC National and Kapodistrian University of Athens EST. 1837

Duration:


- 90 learning hours
- Participants of the course:
- Construction manager students (2-year professional program)
- Educational background:
- High school
- Course responsible
- Aleksander Moisiu University, Durres
- Professional Studies Faculty,
- Department of Marine and Engineering Sciences,
- Dr. Alma Golgota
- Course lecturer / tutor
- Msc. Stela Sefa
- **Educational Prerequisites**
- General knowledge in the energy field
- Learning outcomes
- Upon successful completion of this course students should be able to:

Knowledge:

to understand energy efficiency in buildings;

to understand basic areas of energy efficiency and conservation methods;

2 to explain the proper usage of the equipment necessary to gather energy efficiency data.

to explain the energy conservation measures pertaining to HVAC systems, building equipment, building envelope, sustainable building design and electrical systems.

to explain the math and science principles used to design, develop, test, and supervise production/construction energy efficiency and conservation methods.

to classify the various types of energy suppliers and methods of fuel acquisition.

to understand basic engineering principles and physical laws that they will use in their education and/or profession.

to understand various energy resources, technologies and management fundamentals, and capable in addressing the present and potential future energy problems.

to classify the types of air conditioning systems, the methodologies of their placement in the buildings

Skills:

- to test the reduced energy consumed in the case of insulated buildings or from the use of other energy efficient methods

- to test conservation methods used to reduce energy consumption in the built environment.

- to work with residential and commercial facilities for opportunities to employ these energy saving measures.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

- to work with of energy monitoring and measuring equipment used for energy auditing.

....

KU LEUVEN

- to solve problems with energy savings and determining environmental impacts of these energy saving methods

- to work with different devices and applying basic methodology for evaluating the use of different energy sources

to work with HVAC-related practical exercises

Competence:

- to manage the energy efficient systems
- to demonstrate the energy efficiency /conservation methods available for energy use reduction in residential and commercial settings.
- to demonstrate energy savings and environmental impacts for most energy efficiency methods in order to identify and assess energy conservation opportunities.
- to demonstrate the appropriate usage of energy monitoring and measuring equipment

commonly used by energy specialists and energy auditors

- use, maintain and serve the energy efficient systems
- to manage the use of renewable technologies for electricity generation in buildings
- to demonstrate air conditioning and environmental control equipment for multifunctional

facilities

Abstract

In this course you get knowledge on energy efficiency in buildings as well as energy analysis of different buildings. Knowledge is also obtained on HVAC plants that are installed in the facility as well as work management.

Content

- 1.Introduction to energy efficiency in buildings
- 2. How to use energy more efficiency
- 3. Basic characteristics of energy Saving
- 4. Energy audit and energy performance
 - 4.1 Walk-through audit
 - 4.2 Utility cost analysis
 - 4.3 Standard energy audit
 - 4.4 Detailed energy audit
- 5. Energy using products
- 6. Energy retrofitting of the buildings.
 - 6.1 Building envelope
 - 6.2 Heating and cooling
 - 6.3 System airflow
 - 6.4 System use of controlling central control system
 - 6.5 Boiler plant
 - 6.6 Chilled and hot water circulation
 - 6.7 Plant general
 - 6.8 Domestic hot water
 - 6.9 Lighting
 - 6.10 Appliances

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

- 7: Installation of RES
 - 7.1 Solar power
 - 7.1.1 Solar energy
 - 7.1.2 Photovoltaic systems
 - 7.1.3 Solar thermal
 - 7.1.4 Solar energy in public buildings
 - 7.2 Geothermal power
 - 7.2.1 Heat pumps
 - 7.3 Biomass
 - 7.3.1 Biomass potentials
 - 7.4 Wind power
 - 7.5 Hydro power
- 8. The air-conditioning plants
 - 8.1 The different types of systems: all-air, all-water, mixed air-water systems.
 - 8.2 All-air systems with constant flow and variable flow, single-channel, with zone post-heating,

multi-zone, dual-channel.

- 8.3 Autonomous conditioners.
- 8.4 The choice of the plant about the intended use.
- 8.5 The heating plant and the refrigeration plant: location and safety conditions.
- 8.9 The air distribution channels: sizing criteria and integration problems with the structures.

The problems related to the diffusion of air in the environment.

ENECON

HELLENIC REPUBLIC National and Kapodistrian **University of Athens**

Teaching methods

The theoretical part of the course is presented in the classroom with power point presentation The practical work of the course will be carried out with lab equipment demonstrations.

Assessment

The course grade consists of these components:

40% – Intermediate exam

50% – Final exam

10% - Duty course

Recommended reading

1. Daniel Martinez, Ben Ebenhack, Travis Vagner (2019): Energy efficiency (Concepts and calculations), first edition, ISBN: 9780128121115;

2. Umberto Desideri, Francesco Asdrubali (2018) : Handbook of Energy Efficiency in Buildings, ISBN: 9780128128183;

3. Mehmet KanoğluYunus A. Çengel (2020): Energy Efficiency and Management for Engineers, 1st Edition, McGraw-Hill Education, ISBN: 9781260459098;

4. Jacob J. Lamb and Bruno G. Pollet (2020): Energy-sma<mark>rt buildings : design, construction and monitoring of buildings for improved energy efficiency, Institute of Physics (Great Britain), publisher.</mark>

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

5. Ashrae (2020) : HVAC systems and equipment , ISBN(s):9781947192539

6. Elias Moore (2020): Heating systems: Nova Science Publishers, Inc., 2020.

a. (DLC) 2020006804, ISBN:9781536175578 1536175579

....

KU LEUVEN

3.COURSES OF PROFESSIONAL COLLEGE OF TIRANA (KPT)

The Professional College of Tirana - an institute of higher education in Albania, that offers 2 years higher education vocational study programs (120 ECTS), level 5 - is a partner in the Erasmus + CBHE Engine.

The courses part of KPT are:

- 1. Solar photovoltaic systems
- 2. Renewable energy sources
- 3. Automatic Control
- 4. Electricity Supply in the enterprise
- 5. Electric and hybrid vehicles
- 6. Fundamentals of heating and heating systems

National and Kapodistrian University of Athens

Table 1 – Summary of new / updated courses in KPT:

	Name		Category		
Ν	N of the			Mandator	New/
ο	cours	Study program	Lecturer	y/	Updat
	е			Elective	ed
	Solar			LICCUVC	Cu
	photov				
	oltaic	Electrical Installation Technology (2 years			
1	syste	professional study program with 120 ECTS)	Msc. Ersi S <mark>alaj</mark>	Mandatory	New
	ms (6				
	ECTS)			1.0	
	Renew				
	able				
2	energy	Electro-Mechanics (2 years professional study	Maa Fadil Likai	Elective	New
2	source	program with 120 ECTS)	Msc. Fadil Likaj	Elective	New
	s (6				
	ECTC)				
	Autom				
	atic	Electro-Mechanics (2 years professional study			
	Contro	program with 120 ECTS)			
3	I (5	And	Mp. E <mark>rvis Qo</mark> se	Mandatory	Updated
	ECTS/	Electrical Installation Technology (2 years			
	6 5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	professional study program with 120 ECTS)			
-	ECTS) Electri				
	city				
	Supply				
4	in the	Electrical Installation Technology (2 years	Msc. Ersi Salaj	Mandatory	Updated
	enterp	professional study program with 120 ECTS)	moor Eror Ould	inandatory	opuliou
	rise (6				
	ECTS)				
L	,				

HELLENIC REPUBLIC National and Kapodistrian University of Athens

cre thi dev

5	Electri c and hybrid vehicle s (6 ECTS)	Vehicle technology (2 years professional study program with 120 ECTS)	Msc.Eng. Ilir Palushi /Msc. Eng. Arjan Kullolli	Mandatory	Updated
6	Funda mental s of heatin g and heatin g syste ms (6 ECTS)	Ventilation and air conditioning technology (2 years professional study program with 120 ECTS)	Msc. Marjeta Dhima / Msc. Artur Ruzi (Lab assistant)	Mandatory	Updated

The learning outcomes of the new and updated courses are presented in Table 2 below.

Course	Knowledge	Skills	Competences
Renewable	This course will introduce students to	 Introduction 	At th <mark>e end of t</mark> he
energy	alternative energy sources, namely the	to global	course, the
sources	renewable energy sources and their related	warming,	students will:
	systems. It is intended to provide students with	causes,	understand, use
	basic operating concepts on renewable energy	consequences,	and apply safety
	alternatives. This course will address the causes	measures;	rules when
	and consequences of global warming, gases,	 Renewable 	working with solar
	and the greenhouse effect. Further, it will deal	energy	panels etc.
	with the advantages and the increasing trend in	sources	understand and
	the production of energy from renewable	 Solar Energy: 	apply operating
	sources.	water heating	concepts with
		potential	regard to
			renewable energy
			alternatives;

Universiteti Europian i Tiranës

		• Wind Energy,	classify typ <mark>es and</mark>
		its constrains,	nature of
		wind turbines	renewable energy
		• Water energy,	sour <mark>ces;</mark>
		water	assess and
		turbines,	e <mark>valuate</mark> their
		hydro powers,	advantages and
		Geothermal	drawbacks;
		Energy,	understand
		sources, way	operation of
		and	alternative energy
		opportunities	production
		to use;	<mark>systems,</mark> their
		 Biomass 	<mark>energy eff</mark> iciency
		energy (a <mark>nd mainten</mark> ance;
		 Energy 	
		efficiency	
Automatic	The program aims to prepare students with the	• I <mark>OT (Smart</mark>	At t <mark>he end of th</mark> e
Control	necessary knowledge on the basics of	Home/	cour <mark>se, studen</mark> ts
Systems	automatic control. The course focuses on	Buildings) KNX ,	will:
	technologies that include renewable energy	Z-Wave.	\cdot Explain how a
	and also energy efficiency using the		system that uses
	technologies of the IoT family (Internet of	· S <mark>m</mark> art Grid /	automatic control
	Things) such as Smart Homes, Smart Buildings,	Smart City	works and also
	Smart Grid, and Smart Farming. The aim of this		how it integrates
	course is for students to understand the way	• Renewable	with other
	these technologies function, how to integrate	energies/Energy	systems.
	the systems that require automatic control and	effi <mark>ciency,</mark> their	\cdot Discuss and
	also to be able to install and maintain such	automatic	evaluate which
	systems, also, to get acquainted with new	control	system is valid for
	technologies as well as implement them in		a given

	buildings, through the use of communication		environment and
	protocols suitable for those environments.	· Other building	justify it.
		security systems	· To cla <mark>ssify the</mark>
		(CCTV, Burglary	types of systems
		Alarm, Fire	use <mark>d in Smart</mark>
		Alarm)	Home/ Buildings
		· Basic principles	and IOT Grid and
		of cyber security	also other support
		in industry	systems.
		· Industry 4.0	· Implement the
		· 3D Printing	project and install
		/Scanning	systems that use
		· Augmented	automatic control.
		reality	· Implement the
		D <mark>igit</mark> al twin	electrical and
			technical
			standards of
			Smart Home /
			Buildings
			installations.
			· Test systems and
			maintain them as
			planned.
Automatic	The program aims to prepare students with the	· IOT (Smart	At the end of the
Control	necessary knowledge of the basics of automatic	Home/	course, students
Systems	control. This course focuses on technologies	Buildings) KNX ,	will:
	that include renewable energy and also energy	Z-Wave.	\cdot Explain how a
	efficiency using the technologies of the IoT		system that uses
	family (Internet of Things) such as Smart	· Smart Grid /	automatic control
	Homes, Smart Buildings, Smart Grid, and Smart	Smart City	works and also
	Farming. The aim of this course is for students		how it integrates
	to understand the way these technologies work		

/func	tion, how to integrate the systems that	· Renewable	with other
requi	re automatic control and also to be able to	energies/Energy	systems.
instal	l and maintain such systems, to also get	efficiency , their	· Discuss and
acqua	ainted with new technologies as well as	automatic	evaluate which
imple	ment them in buildings, through the use	control	sys <mark>tem is valid</mark> for
of co	mmunication protoco <mark>ls suitable for those</mark>		a given
envir	onments.	· SCADA	environment and
			justify it.
		· Other building	 To classify the
		security systems	types of systems
		(CCTV, Burglary	used in Smart
		Alarm, Fire	Home/ Buildings
		Alarm)	and IOT Grid and
			also other support
		• Basic principles	systems.
		of cyber security	· <mark>Implement t</mark> he
		in industry	pr <mark>oject and ins</mark> tall
			sys <mark>tems that us</mark> e
			auto <mark>matic cont</mark> rol.
			· Implement the
			electrical and
			technical
			standards of
			Smart Home /
			Buildings
			installations.
			· Test systems and
			, maintain them as
			planned.

gine			Erasmus+ Progra
Course	Knowledge	Skills	Competences
Electricity	This course will introduce the	 The study of new 	At the end of the course,
Supply in the	power supply system as a	methods of	students will:
enterprise	whole of equipment for the	electricity supply.	 Understand the
	production, transmission, and	 Rational choice of 	decentralization of
	distribution of electricity.	the number and	electricity generation and
	Challenges to meet the	power of the	the continuous changes in
	technical and sustainable	transformation.	flow directions and how
	requirements, within the	 Choice of rational 	these interact in larger
	future perspectives for each of	voltage depending	traditional systems,
	the resources and systems.	on specific	 Understand the basic
	Students will learn the basics	electrical schemes.	principles for the
	of power supply to enterprises	 Compensation with 	construction of unipolar
	as well as the major	reactive energy.	schem <mark>e</mark> s with the
	development of renewable	 Security of supply. 	corresp <mark>ond</mark> ing sizes for the
	sources as part of power	determination of	supply <mark>of one</mark> or more
	supply in international trends	average loads.	enterpr <mark>ises that</mark> function
	in power transmission and	 Enterprise network 	as consu <mark>mers and</mark>
	distribution.	protection.	produce <mark>rs with the</mark>
			installati <mark>on of renew</mark> able
			resources.
Solar	This course will cover	 At the end of the 	At the end <mark>of the cours</mark> e,
Photovoltaic	theoretical and practical topics	course, st <mark>uden</mark> ts	students will:
Systems	about solar energy and its use	will be ab <mark>le to</mark> :	Have knowledge of
	in electricity production from	 To implement the 	photovoltaic system
	systems with PV modules,	design o <mark>f a</mark>	technology.
	types of PV systems, inverters,	photovo <mark>ltaic p</mark> lant	Understand how
	batteries, charge controllers,	and perform	photovoltaic energy
	rack mounting and permits.	energy yi <mark>eld</mark>	conversion is used to
	Sizing solar systems puts	simulation <mark>s.</mark>	produce electricity.
	students in a good position to	• To build	Design and manufacture of
	advance students in evaluating	preventive, choose	various technologies of

installed active power, how	materials and	solar cells and modules,
solar cells and modules are	equipment for the	various components of the
connected. This course offers	construction of a	photovoltaic system,
you advanced knowledge	photovoltaic plant.	Assess and evaluate the
within the field of Converting	 To install, maintain 	role of photovoltaic energy
DC electricity to AC elec <mark>tricity.</mark>	and repair the	in sustaina <mark>ble en</mark> ergy
	elements and	systems.
	equipment of a	
	photovoltaic	
	system.	

Course	Knowledge	Skills		Competences
Electric	This course consists of both	_	The phenomenon of	At t <mark>he end of t</mark> his
and	theoretic and laboratory		global warming, the	cour <mark>se, the stud</mark> ents
hybrid	components. Global warming,		greenhouse effect and	are e <mark>xpected to h</mark> ave
vehicles	the danger that currently		its consequences.	receiv <mark>ed the</mark>
	threatens the globe, needs an		Greenhouse gases and	approp <mark>riate</mark>
	increase in the production of		their gl <mark>obal w</mark> arming	knowled <mark>ge on the</mark>
	electric and hybrid vehicles.		potenti <mark>al.</mark>	construction and
	Through this course, it is		Consequences and	operation of these
	intended to provide students		measur <mark>es aga</mark> inst	vehicles as well as
	with the basic operational		global w <mark>armin</mark> g.	their trend
	concepts, types and	_	Trends o <mark>f elect</mark> ric and	
	realizations of these vehicles.		hybrid ve <mark>hicles.</mark> Their	
	The main topics of this course		priorities, especially in	To understand the
	deal with the advantages and		relation to gas	principle and
	the increasing trend in the use		emissions,	technical operation of
	of these vehicles, construction		environmental	photovoltaic panels
	and components, high voltage		protection and global	and their application
	batteries, their management		warming.	
	systems, etc. Priority has been			

HELLENIC REPUBLIC National and Kapodistrian University of Athens

asca Adjencia e Sigurium te

	given to the use of renewable	_	The main systems and	in electric and hybrid
	energies (solar panels) for		aggregates that make	vehicles.
	charging the batteries of these		up the vehicle. High	
	vehicles, the growing trend of		voltage batteries types	
	using solar panels for charging		and their construction.	To effi <mark>ciently use</mark> and
	batteries, as well as vehicles	_	Electronic management	mak <mark>e use o</mark> f safety at
	with photovoltaic panels		system. Battery	work using
	integrated into the vehicle.		charging methods,	instruments and
	Special topics have addressed		inverter, etc.	other protective
	the energy efficiency of these	_	Electric motors used in	eq <mark>uip</mark> ment.
	vehicles.		electric and hybrid 🦯	
			vehicles.	
		_	Bidirectional and	To <mark>perform p</mark> eriodic
			intelligent ch <mark>arg</mark> ing of	che <mark>cks, mainte</mark> nance
			electric vehicles	and <mark>safety meas</mark> ures
		_	Charging the batteries	in el <mark>ectric and hy</mark> brid
			of electri <mark>c an</mark> d hybrid	vehicl <mark>es</mark>
			vehicles with	
			photovoltaic panels	
		_	Electric vehicles with	
			integrated photovoltaic	
			panels	
		_	Construction and	
			operation of	
			photovoltaic plants.	
		_	Cooling system of the	
			battery block and other	
			electronic equipment	
		_	Braking system, and	
			other vehicle systems,	
			differences from those	
			of traditional vehicles	
<u>L</u>	l	l		

cre thi dev

- The vehicle's air
conditioning and
comfort system,
construction,
operation, the
difference from those
of traditional vehicles.
 Electronics in all vehicle
systems
 Hybrid vehicles, the
different ways of their
construction.
Differences between
hybrid and purely
electric vehicles
 Hydrogen vehicles
 Periodic checks,
maintenance and
safety measures in
electric and hybrid
vehicle <mark>s.</mark>
 Energy efficiency in
electric and hybrid
vehicles

Course	Knowledge	Skills	Competences
Fundamentals	The course contains the	Heat and its	At the end of the course,
of heating and	main theoretical and	transmission.	students will be able to use
heating	practical information about	Laws of	the basic theoretical and
systems		Thermodynamics.	practical concepts and laws of

HELLENIC REPUBLIC National and Kapodistrian University of Athens

the basics of heating and	Heat losses.	the subject. They will have the
heating systems.	Thermal balance	necessary skills to solve the
Specifically, the basic	and thermal	technical problems they will
concepts of heat and its	insulation of a	encounter while working in
transmission methods, the	building.	their profession.
main requirements of	Heating plants and	Specifically, students will
thermal comfort, thermal	their components.	know, use and maintain the
losses and their analysis,	Thermal power	main heating systems and
heating systems and their	plants (boilers).	equipment, such as:
components, solar panels,	Solar panels.	• boi <mark>lers,</mark>
types, assembly, operation		 radiant and convective
and their use for hot water		heating radiators,
and heating systems.		• floor and ceiling
		heat <mark>ers,</mark>
		 solar panels for hot
		water and sanitary
		water,
		 tanks and their
		connection to the
		boiler,
		 control and security
		devices, etc.

The syllabi of each course are as follows:

Syllabus

1. SOLAR PHOTOVOLTAIC SYSTEMS

BENECON NEERING CONSULTANTS

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Course topic Solar photovoltaic systems Number of credits 6 ECTS Course responsible Professional Collage of Tirana Department of Information Technology Prof. Dr. Piro Cipo (Head of Department) Study program: Electrical Installation Technology

Course lecturer

Msc. Ersi SALAJ

Prerequisites

Previous knowledge of electrical equipment, electrical installations, etc.

Learning outcomes

Upon successful completion of this course students should be able to:

• Explain the use of photovoltaic solar energy in electrical installation.

• Discuss Classification of main photovoltaic materials: photovoltaic, monocrystalline, polycrystalline, and amorphous cells.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

• Classify Formation of modules by connecting modules, panels, and a combination of electrical connections.

• Design and describe the installation Converters (DC / DC converters and DC / AC inverters), their quality, and their role as part of the photovoltaic system. Batteries and their types as part of the photovoltaic system.

• Reading of electrical projects, with the necessary elements for the possibility of implementing systems from renewable energy sources.

• Construct power supply system of photovoltaic panels on terraces, vertical walls, on the ground, and on the surfaces of lakes and their dams.

• Test Converters (DC / DC converters and DC / AC inverters), their quality, and their role as part of the photovoltaic system. Batteries and their types as part of the photovoltaic system.

- Manages defects in photovoltaic systems and ways to repair them
- Lead a team in installation safety, maintenance, and troubleshooting.

Abstract

At the end of this cycle of lectures, the student is introduced to the ways of calculating electrical loads for Hydropower, solar, wind, geothermal, and biomass renewable energy. Classification of main photovoltaic materials: photovoltaic, monocrystalline, polycrystalline, and amorphous cells. Formation of modules by connecting modules, panels, and a combination of electrical connections. Installation of photovoltaic panels on terraces, vertical walls, on the ground, and on the surfaces of lakes and their dams. Converters (DC / DC converters and DC / AC inverters), their quality, and their role as part of the photovoltaic system. Batteries and their types as part of the photovoltaic system. Protection against atmospheric shocks, earthing, and protection against tactile and step voltage. Realization in practice. The course aims to give students general knowledge about the development of solar photovoltaic systems. Legislation. Technical norms and national and international standards. Their value. CEI modules and brands. The course aims to provide practical knowledge in these areas., hydropower, solar, wind. The course aims to give students a general knowledge of Electricity Supply from Renewable Energy Sources using techniques for reducing energy losses. The course illustrates the techniques followed in building a renewable energy supply for

power plant which consists in design, supplies of building materials installation, inspection and testing for a "turnkey" product.

Content

1. Introduction. Renewable energies. Hydropower, Solar thermal and Photovoltaic Solar; Wind energy and Geothermal energy. Biomass energy.

2. The situation in Albania. Areas with large and small radiation, according to the indicator kWh / m2 annually, monthly, and daily. Areas with sunnier days.

3. Classification of the main materials with which photovoltaic cells are built: monocrystalline, polycrystalline, and amorphous materials.

4. Volt-ampere characteristic of a photovoltaic cell, the influence of the degree of radiation, the power curve, and the influence of the ambient temperature (in W/m^2 or in kWh / m²).

5. Installation of photovoltaic panels on terraces, roofs of houses, palaces, and their placement on the ground in a certain way. Buffer diodes and reverse polarity diodes. Their role in the protection of photovoltaic panels.

6. Orientation of solar panels and optimal angles in space referring to the South. Sunlight movements and panel position. Efficiency and the problems that arise.

7. Converters (DC / DC Converters). Why they are needed, and what is their role as part of the solar photovoltaic system. Types of DC / DC converters: Boost converters that increase the output voltage.

8. Inverter (DC / AC). Why they are needed, and what is their role as part of the solar photovoltaic system. Types of DC / AC inverters: Solar panel inverters: centralized inverters, string inverters, and the role of micro inverters located in the photovoltaic solar system modules.

9. Photovoltaic solar system batteries. The main parameters that characterize a battery: voltage (V), battery capacity (Ah), battery power P(W), and electric energy E (Wh). Simple calculations of these capacities for battery type selection.

10. Assessment of battery charge rate, with ampere-meter or voltmeter. Connections in series and parallel, mixed to achieve multiple voltage change and multiple capacitance. Battery safety problems, from explosion, fire, etc.

11. Protective earthing and protection against atmospheric overvoltage, as a function of the way the photovoltaic panels are placed on the terrace, roof, vertical walls of buildings, and on the ground.

12. Types of earthing conductors, ways of placement in the ground, and number of earthing conductors. Simple calculations of earthing resistance. Rails and connecting cables of metal parts where the panels/panel with the group of earthing conductors are placed. Ways and methods of protection from lightning strikes, vertical rods, their length, etc.

13. Concrete projects with calculations for the installed power of some systems, parameters, geographical position, other characteristics such as degree of solar illumination, orientation, etc.

14. Photovoltaic sources in the near future, Examples from the system in the lake of the hydropower plant of Banja, Karavasta, and Spitalla

15. Test.

Teaching methods

Providing the students with the fundamental of the electricity supply professional concepts and to prepare them for advanced study in electrical professional areas. Teaching how to search, classify and analyse technical information about equipment, device or component datasheets and to be able to identify suitable information sources. Providing hands-on and experimental experience, to supplement projects in electricity supply and to promote the application of professional concepts. Using, quite complex project scenarios to provide the students with the ability to find solutions to the problems and to enhance their critical reasoning needed to choose the appropriate solution in accordance with specific criteria. Implementing and test one or more design alternatives to better solve the problem to enhance other competencies within the professional task, such as: the ability to write good technical reports and to make presentations, project management and economics, and team-work.

(face to face class, lab practice, on place visits etc.)

Assessment

10% - Participation and activation in exercises

30% - Laboratory/Practice

60% - Final exam

Recommended reading

1. "Power System Analysis" by John J. Grainger, William D. Stevenson. 1995, McGraw-Hill Inc.

2. "Power Systems Protection, Power Quality, Substation Automation" 1994, IDC TechBooks.

3. "Power Systems Modelling and Fault Analysis: Theory and Practice" by N.D. Tleis. 2008, Elsevier Ltd. Batteries in pv systems. Javier Bernabé Mohedano Martínez.

4. Design and construction of works in the field of electricity generation industry with hydropower plants in the coming decades in the world and Albania / Edmond Pinguli; Nasho Pinguli; rec. Emin Musliu;

5. Electricity supply of industrial enterprises / Bardhyl Reso; Bamir Çano; Gjergj Çaçani; Mihal Jorgoni;

Recommended web pages

1. https://books.google.com/googlebooks/about/ Transition to Renewable Energy Systems - Detlef Stolten, Viktor Scherer (Wiley-VCH, 2013)

Syllabus

2. ELECTRICITY SUPPLY IN THE ENTERPRISE

Course topic

Electricity supply to the enterprise

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Number of credits

6 ECTS

Course responsible

Professional Collage of Tirana

Department of Information Technology

Prof. Dr. Piro Cipo (Head of Department)

Study program: Electrical Installation Technology

Course lecturer

Msc. Ersi SALAJ

Prerequisites

Previous knowledge of electrical equipment, electrical installations, etc.

Learning outcomes

Upon successful completion of this course students should be able to:

- Explain electrical loads for typical schemes in the electricity supply sector.
- Discuss the technical-economic calculation, quality of electricity and security of customer supply.
- Classify the rating systems for Overcurrent protective devices, equipment grounding.
- Design and describe the installation of an electrical power distribution system, including the loads and circuits required for various buildings and operations

Reading of projects, basics of design and measurement of electrical systems with the necessary elements for the possibility of building supply systems from renewable energy sources.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

cre thi dev

• Construct power supply system of a basic renewable energy plant with a capacity of up to 500 kW.

- Test current and voltage transformers, metering devices and electrical conductors.
- Manages a project on renewable energy sources installed in the enterprise
- Lead a team in installation safety, maintenance, and troubleshooting.

Abstract

At the end of this cycle of lectures, the student is introduced to the ways of calculating electrical loads, Typical schemes for electricity supply, Technical-economic calculation, quality of electricity and security of customer supply of electricity from renewable energy sources reading of projects, basics of design and measurement of electrical systems with the necessary elements for the possibility of building supply systems from renewable energy sources. Course "Electricity supply in the enterprise. Addresses international trends for energy supply from renewable energy sources" deals with general knowledge on the power system and electricity supply network of urban, industrial, and rural consumers from renewable energy sources, hydropower, solar, wind. The course aims to give students a general knowledge of Electricity Supply from Renewable Energy Sources using techniques for reducing energy losses. The course illustrates the techniques followed in building a renewable energy supply for power plant which consists in design, supplies of building materials installation, inspection and testing for a "turnkey" product.

Content

1. Introduction of electrical network. Warranty of supply and quality of energy, Stability, Effects of renewable energy on the network, Limits of the current network configuration. Demand management.

2. Calculation of various electrical loads and specific equipment for electricity from renewable sources.

3. Typical schemes for the supply of electricity from renewable sources combined with the power grid or on the island.

4. Direct control of the predicted power of the systems connected to the power grids. Disconnection and protection devices in generation and storage networks. Technological aspects of connecting power systems to the grid.

5. Section calculation of conductors and cables according to some criteria, which are the choice according to the heating currents. In hydropower plants and photovoltaic plants.

6. Selection according to protection against short circuit currents and overloads.

7. Optimization and Planning of the Supply Network from renewable hydric and photovoltaic sources.

8. Technical-economic calculation in power supply systems of urban, industrial and rural loads.

- 9. Integration of Renewable Energy Sources with the Smart Grid.
- 10. Short circuit current calculations.

11. Improving the power factor through renewable energy sources.

12. Micro-Networks. Assessment of resources and needs. Dimensioning Optimization and Control of integrated systems.

13. Electricity Grid Modelling and Simulation tools consisting of energy production, through renewable hydric and photovoltaic sources.

14. Calculation of their reactive power, where capacitor batteries are most used.

15. Test.

Teaching methods

Providing the students with the fundamental of the electricity supply professional concepts and to prepare them for advanced study in electrical professional areas. Teaching how to search, classify and analyze technical information about equipment, device or component datasheets and to be able to identify suitable information sources. Providing hands-on and experimental experience, to supplement projects in electricity supply and to promote the application of professional concepts. Using, quite

complex project scenarios to provide the students with the ability to find solutions to the problems and to enhance their critical reasoning needed to choose the appropriate solution in accordance with specific criteria. Implementing and test one or more design alternatives to better solve the problem to enhance other competencies within the professional task, such as: the ability to write good technical reports and to make presentations, project management and economics, and team-work.

(Face to face class, lab practice, on place visits etc.)

Assessment

10% - Participation and activation in exercises

30% - Laboratory/Practice

60% - Final exam

Recommended reading

"Power System Analysis" by John J. Grainger, William D. Stevenson.1995, McGraw-Hill Inc.

"Power Systems Protection, Power Quality, Substation Automation" 1994, IDC TechBooks.

"Power Systems Modelling and Fault Analysis: Theory and Practice" by N.D. Tleis. 2008, Elsevier Ltd. Batteries in pv systems. Javier Bernabe Mohedano Martínez.

Design and construction of works in the field of electricity generation industry with hydropower plants in the coming decades in the world and Albania / Edmond Pinguli; Nasho Pinguli; rec. Emin Musliu; rec. Kiço Negovani; rec. Niko Pano.

Electricity supply of industrial enterprises / Bardhyl Reso; Bamir Çano; Gjergj Çaçani; Mihal Jorgoni; red. Jorgjia Haxho

Recommended web pages

https://books.google.com/googlebooks/about/ Transition to Renewable Energy Systems - Detlef Stolten, Viktor Scherer (Wiley-VCH, 2013)

Syllabus

3. AUTOMATIC CONTROL

Course topic

Automatic control systems

Number of credits

5 ECTS

Course responsible

Professional Collage of Tirana

Department of Information Technology

Study program: Electro-Mechanics

Prof. Dr. Piro Cipo (Head of Department)

Course lecturer

MP. Ervis Qose

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Prerequisites

Previous knowledge of sensors, input/output, basics on electronics and electrical installation etc.

Learning outcomes

Upon successful completion of this course students should be able to:

• Explain how a system that uses automatic control works and also how it integrates with other systems.

- Discuss and evaluate which system is valid for a given environment and justify it.
- To classify the types of systems used in Smart Home/ Buildings and IOT Grid and also other support systems.
- Implement the project and install systems that use automatic control.
- Implement the electrical and technical standards of Smart Home / Buildings installations.
- Test systems and maintain them as planned.

Abstract

This program is based on contemporary literature combining lectures with exercises and laboratory work. The program aims to prepare students with the necessary knowledge of the basics of automatic control. This course focuses on technologies that include renewable energy and also energy efficiency using the technologies of the IoT family (Internet of Things) such as Smart Homes, Smart Buildings, Smart Grid, and Smart Farming. The aim of this course is for students to understand the way these technologies' function, how to integrate the systems that require automatic control and also to be able to install and maintain such systems, to also get acquainted with new technologies as well as implement them in buildings, through the use of communication protocols suitable for those environments. An integral part of the course is the introduction to other systems which are related to building safety and energy efficiency management by integrating them with photovoltaic panels of buildings or other household appliances. An important element is also the cyber security of IoT systems, types of attacks, and defense mechanisms.

Content

1. Introduction to IoT. Areas of use and different methods of automatic controls. Definition of IoT.

2. IoT concepts and architecture. The four phases of the IoT architecture. The role of artificial intelligence, big data, and machine learning. Communication protocols and standards in the IoT. LORA, MQTT, CoAP. The role of 5G technology.

3. Renewable energies, their need, and their management using automatic control. Process control and monitoring system.

4. Areas of application of IoT and technologies. The role of IoT in increasing energy efficiency and its management.

5. Smart grid. Its integration and role in electricity management. Elements of its architecture such as Smart Metter. Energy peak management. Concrete implementation cases.

6. Smart Buildings and green buildings. The main elements of Smart Buildings such as sensors, actuators, and Gateway. Building automation for automatic control.

7. Integration of Smart Buildings with photovoltaic panels for renewable energy management and efficient energy management using other sources such as solar heating, lighting, etc.

8. SCADA and its implementation in hybrid power plants for efficient management. SCADA architecture and other integrations with GIS and monitoring systems.

9. Smart Buildings and Smart Home. The importance of these technologies, the way of their implementation and operation. Constituent elements of architecture.

10. Communication protocols and technologies in Smart Home and Smart Buildings. Types of sensors and actuators, and ways of installing and configuring them. Importance of local servers and configurations.

11. KNX architecture and components of the KNX family. Mode of operation, electrical connections, addressing, etc.

12. Z-WAVE Architecture. The way of communication of sensors and actuators with the local server. Types of integrations between technologies. Strong and weak points of ZWAVE communication.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

13. Other technologies in Smart Home and Smart Buildings. Other Smart Communications and Smart Home communication standards and protocols. Crestron, Leviton, Control4, Sevant, Loxone etc.

14. Implementation of Smart Home and Smart Buildings (Case Studies). Smart Hotels, protection and security systems (Surveillance systems, fire systems, alarm systems, dorbell, etc.)

15. Security in IoT, Smart Buildings, and Smart Home. Types of attacks that affect the security of technologies in the IoT family. Importance of a safe communication protocol and configuration modes. Case studies of cyberattacks.

Teaching methods

During this course are going to be used PowerPoint lectures, video simulations, lecture series, and simulations with various software and real equipment Digital Twin Methods¹.

Seminars with questions and exercises as well as a knowledge check every two other weeks through the Teams platform.

Laboratories are conducted by working with physical installations of local sensors, actuators, and local servers, as well as the implementation of electrical circuits for connecting sensors or actuators, Scenario configurations, and programming to create an example of Smart Home and Smart Buildings. Integrations with voice assistants like Amazon Alexa or Google Assistant and integration with SCADA (Industries 4.0).

Assessment

10% - Participation and activation in exercises

30% - Laboratory/Practice

60% - Final exam

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Recommended reading

1. Internet of Things Architectures, Protocols and Standards by Simone Cirani Gianluigi Ferrari Marco Picone Luca Veltri 2018, ISBN 1119359678, 978-1119359678

2. Building Automation: Communication systems with EIB/KNX, LON und BACnet, Hermann Merz, Thomas Hansemann, Christof Hübner,2007,ISBN: 3540888284,9783540888284

3. Z-Wave Essentials , Christian Paetz 2017 , ISBN: 1545394547,9781545394540

4. The IoT Hacker's Handbook A Practical Guide to Hacking the Internet of Things by Aditya Gupta, 2017, ISBN: 1484242998, 978-1484242995

5. Renewable Energy Systems, David Buchla, Thomas Kissell and Thomas Floyd, Pearson, 2015, ISBN: 978-0-13-262251-6.

Recommended web pages

- 2. LoRa Alliance https://lora-alliance.org/
- 3. KNX Association https://www.knx.org/knx-en/for-professionals/index.php
- 4. Z-WAVE Alliance https://z-wavealliance.org/

Syllabus

4. AUTOMATIC CONTROL

Course topic

Automatic control systems

HELLENIC REPUBLIC National and Kapodistrian University of Athens

BENECON

Universiteti

Number of credits

6 ECTS

Course responsible Professional Collage of Tirana Department of Information Technology Prof. Dr. Piro Cipo (Head of Department) Study program: Electrical Installation Technology

Course lecturer

MP. Ervis Qose

Prerequisites

Previous knowledge of sensors, input/output, basics on electronics and electrical installation etc.

Learning outcomes

Upon successful completion of this course students should be able to:

• Explain how a system that uses automatic control works and also how it integrates with other systems.

• Discuss and evaluate which system is valid for a given environment and justify it.

• To classify the types of systems used in Smart Home/ Buildings and IOT Grid and also other support systems.

HELLENIC REPUBLIC

National and Kapodistrian

- Implement the project and install systems that use automatic control.
- Implement the electrical and technical standards of Smart Home / Buildings installations.
- Test systems and maintain them as planned.

Abstract

This program is based on contemporary literature combining lectures with exercises and laboratory work. The program aims to prepare students with the necessary knowledge of the basics of automatic control. This course focuses on technologies that include renewable energy and also energy efficiency using the technologies of the IoT family (Internet of Things) such as Smart Homes, Smart Buildings, Smart Grid, and Smart Farming. The aim of this course is for students to understand the way these technologies' function, how to integrate the systems that require automatic control and also to be able to install and maintain such systems, to also get acquainted with new technologies as well as implement them in buildings, through the use of communication protocols suitable for those environments. An integral part of the course is the introduction to other systems which are related to building safety and energy efficiency management by integrating them with photovoltaic panels of buildings or other household appliances. An important element is also the cyber security of IoT systems, types of attacks, and defense mechanisms.

Content

1. Introduction to IoT. Areas of use and different methods of automatic controls. Definition of IoT.

2. IoT concepts and architecture. The four phases of the IoT architecture. The role of artificial intelligence, big data, and machine learning. Communication protocols and standards in the IoT. LORA, MQTT, CoAP. The role of 5G technology.

3. Renewable energies, their need, and their management using automatic control. Process control and monitoring system.

4. Areas of application of IoT and technologies. The role of IoT in increasing energy efficiency and its management.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

5. Smart grid. Its integration and role in electricity management. Elements of its architecture such as Smart Metter. Energy peak management. Concrete implementation cases.

6. Smart Buildings and green buildings. The main elements of Smart Buildings such as sensors, actuators, and Gateway. Building automation for automatic control.

7. Integration of Smart Buildings with photovoltaic panels for renewable energy management and efficient energy management using other sources such as solar heating, lighting, etc.

8. SCADA and its implementation in hybrid power plants for efficient management. SCADA architecture and other integrations with GIS and monitoring systems.

9. Smart Buildings and Smart Home. The importance of these technologies, the way of their implementation and operation. Constituent elements of architecture.

10. Communication protocols and technologies in Smart Home and Smart Buildings. Types of sensors and actuators, and ways of installing and configuring them. Importance of local servers and configurations.

11. KNX architecture and components of the KNX family. Mode of operation, electrical connections, addressing, etc.

12. Z-WAVE Architecture. The way of communication of sensors and actuators with the local server. Types of integrations between technologies. Strong and weak points of ZWAVE communication.

13. Other technologies in Smart Home and Smart Buildings. Other Smart Communications and Smart Home communication standards and protocols. Crestron, Leviton, Control4, Sevant, Loxone etc.

14. Implementation of Smart Home and Smart Buildings (Case Studies). Smart Hotels, protection and security systems (Surveillance systems, fire systems, alarm systems, dorbell, etc.)

15. Security in IoT, Smart Buildings, and Smart Home. Types of attacks that affect the security of technologies in the IoT family. Importance of a safe communication protocol and configuration modes. Case studies of cyberattacks.

HELLENIC REPUBLIC

National and Kapodistrian

Teaching methods

....

During this course are going to be used PowerPoint lectures, video simulations, lecture series, and simulations with various software and real equipment Digital Twin Methods¹.

Seminars with questions and exercises as well as a knowledge check every two other weeks through the Teams platform.

Laboratories are conducted by working with physical installations of local sensors, actuators, and local servers, as well as the implementation of electrical circuits for connecting sensors or actuators, Scenario configurations, and programming to create an example of Smart Home and Smart Buildings. Integrations with voice assistants like Amazon Alexa or Google Assistant and integration with SCADA (Industries 4.0).

Assessment

10% - Participation and activation in exercises

30% - Laboratory/Practice

60% - Final exam

Recommended reading

1. Internet of Things Architectures, Protocols and Standards by Simone Cirani Gianluigi Ferrari Marco Picone Luca Veltri 2018, ISBN 1119359678, 978-1119359678

2. Building Automation: Communication systems with EIB/KNX, LON und BACnet, Hermann Merz, Thomas Hansemann, Christof Hübner,2007,ISBN: 3540888284,9783540888284

3. Z-Wave Essentials , Christian Paetz 2017 , ISBN: 1545394547,9781545394540

4. The IoT Hacker's Handbook A Practical Guide to Hacking the Internet of Things by Aditya Gupta, 2017, ISBN: 1484242998, 978-1484242995

5. Renewable Energy Systems, David Buchla, Thomas Kissell and Thomas Floyd, Pearson, 2015, ISBN: 978-0-13-262251-6.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

Recommended web pages

- 1. LoRa Alliance https://lora-alliance.org/
- 2. KNX Association https://www.knx.org/knx-en/for-professionals/index.php
- 3. Z-WAVE Alliance https://z-wavealliance.org/

Syllabus

5. RENEWABLE ENERGY SOURCES

Course topic

Renewable energy sources

Number of credits

6 ECTS

Course responsible

Professional College of Tirana

Electro-Mechanics and Applied System Department

Prof. Dr. Marenglen Gjonaj (Head of Department)

Course lecturer

Msc. Fadil Likaj

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

cre thi dev

Learning outcomes

This course consists of both theoretical and laboratory components. This course is intended to provide students with basic operating concepts on renewable energy alternatives. This course will address the causes and consequences of global warming, gases, and the greenhouse effect. The advantages and the increasing trend in the production of energy from renewable sources.

At the end of the course, the students will:

understand, use and apply safety rules when working with solar panels etc.

understand and apply operating concepts with regard to renewable energy alternatives;

classify types and nature of renewable energy sources;

assess and evaluate their advantages and drawbacks;

understand operation of alternative energy production systems, their energy efficiency and maintenance;

Abstract

At the end of this course, students are expected to have acquired the necessary knowledge of production alternatives, construction, and operation of alternative energy production systems and their energy efficiency. Students will have the opportunity to practice the knowledge gained using special tools and instruments in the laboratory.

Content

During this course, students will have acquired basic concepts related to:

1. Knowledge of the phenomenon of global warming. What is global warming, its consequences, the greenhouse effect and the gases that affect global warming, the potential for global warming, the

measures needed, and international agreements to curb the phenomenon of global warming. (Lectures prepared by course instructor)

2. Solar energy for water heating. Equipment used for utilizing solar energy for heating water. Construction and components of a solar water heating system. Active and passive systems, thermosyphon, and pump systems. Solar systems combined with additional heating. (Lectures prepared by the course instructor, recommended literature No.1 pp. 27 to 27, recommended No.2. P.9 to 17)

3. Dimensioning of solar systems for heating water. Solar collectors. Collectors without covers and those with glass covers. Vacuum tube collectors. Water reservoir and its capacity. Circulating water pump. Control and monitoring equipment. Solar heating efficiency. Applications in Albania. (Lectures prepared by the course instructor, recommended literature No.1. Pp.33 to 52, recommended No.2. P.18 to 41)

4. Electricity generation through photovoltaic panels. Properties of photovoltaic circuits. Photovoltaic cells and their working principle. Structure, construction, and efficiency of photovoltaic cells. (Lectures prepared by the course instructor, recommended literature No.1. Pp.59 to 90, recommended No.2. P.44 to 54)

5. Photovoltaic group modules, series, and parallel connection of cells. Types of photovoltaic systems. Autonomous, hybrid, and grid-integrated photovoltaic systems, their configuration. (Lectures prepared by the course instructor, recommended literature No. 2. Pp. 57 to 69)

6. The energy efficiency of electricity production through photovoltaic panels and their application in Albania. Energy storage systems. The main trend of studies in the field of solar energy, and the possibility of implementing solar systems in Albania. (Lectures prepared by the course instructor, recommended literature No. 1. p.90 to 105)

7. Wind energy, its constraints. Wind source features. Technologies used to produce wind energy. Wind turbines, the principle of their operation. (Lectures prepared by the course instructor, recommended literature No. 1. p.449 to 450 and p.458 to 460, recommended No. 2. p.74 to 78)

8. Types of wind turbines. Horizontal axis turbines. Vertical axis turbines. Components of wind turbines, propellers, transmissions, generators, transformers, etc. (Lectures prepared by the course instructor, recommended literature No.1. Pp.460 to 463, recommended No.2. P.79 to 84)

9. Installation of wind turbines. Determining the conditions of their location. Integration in the electrical grid, environmental effects. The energy efficiency of wind turbines. Possibilities of their implementation in Albania. (Lectures prepared by the course instructor, recommended literature No.2. P.92 to 96)

10. Water energy. Water turbines, types. Pelton, Kaplan, Francis, Ossberger turbines. Construction and operation of water turbines. (Lectures prepared by the course instructor, recommended literature No.2. P.101 to 108)

11. Systems for the use of hydropower (hydropower plants). The Principle Scheme of energy heights in the construction of hydropower plants. Energy efficiency. (Lectures prepared by the course instructor, recommended literature No.2. P.110 to 120)

12. Geothermal energy. Thermal energy sources. Ways and opportunities for the use of thermal energy. Utilization of geothermal energy for the production of electricity as well as for heating buildings. (Lectures prepared by the course instructor, recommended literature No.1. Pp.330 to 340, recommended No.2. P.156 to 169)

13. Heat pumps, their working principle, construction, and their constituent components. Scope of application of heat pumps. Energy efficiency. The possibility of using them in our country. (Lectures prepared by the course instructor, recommended literature No.2. Pp.173 to 184)

14. Biomass energy. Bioenergy sources, urban and industrial solid waste sources. The technology of benefiting energy through them. Regulatory and institutional legislation on renewable energy. (Lectures prepared by the course instructor, recommended literature No.1. P.507 to 543, recommended No.2. P.128 to 153)

Teaching methods:

Power point presentations, through tables and interactive communications with the audience.

Exercises according to the topics given in lectures, demonstrations, and various simulations, which will serve students to know the sources of renewable energy, construction and operation of renewable energy production systems, trends, and areas of their application in our country.

(Face to face class, lab practice, on place visits etc.)

Laboratory work

LABORATORY No.1: Getting familiar with safety precautions when working on solar panels. Procedures to be performed to disconnect the high voltage current. Tension protective clothing etc.

LABORATORY No.2: Getting familiar with solar panels for water heating. Getting familiar with the construction and components that make up the system. Application in home heating, assembly, dismantling, and possible defects of components.

LABORATORY No.3: Vacuum tube collectors. Water reservoir and its capacity. Circulating water pump. Control and monitoring equipment. Solar heating efficiency. Solar systems combined with additional heating

LABORATORY No.4: Electricity generation through photovoltaic panels. Properties of photovoltaic circuits. Photovoltaic cells and their working principle. Structure, and construction of photovoltaic cells.

LABORATORY No.5: Photovoltaic group modules, series, and parallel connection of cells. Their practical application. Energy storage systems. The possibility of implementing solar systems for energy production.

LABORATORY No.6: Water energy. Water turbines. Construction and operation of water turbines. Their concretization in a hydropower plant in Rrubik or in Ulez, etc.

LABORATORY No.7: Geothermal energy. Heat pumps, their construction, the principle of work, and their constituent components. Assembly, disassembly, and possible defects of components. Circulating system fluid, leaks, testing, and elimination. Cases of application of heat pumps for heating homes, swimming pools, etc.

Assessment

The course grade consists of these components:

10% - Participation and activation in exercises

HELLENIC REPUBLIC National and Kapodistrian University of Athens

BENECON

30% – Laboratory work

60% - Final exam

LITERATURE

Basic literature Lectures prepared by the course lecturer

Recommended reading

1. Alternativa te energjise se riperteritshme (Prof. Pellumb Berberi, Prof. Ilirjan Malollari, Prof. Elmaz Shehu, Prof. Nevton Kodhelaj, Dr. Konalsi Gjoka etj, viti 2020

2. Burimet e riperteritshme te energjise (Naser sahiti, Maliq Pireci, Besim Veselaj)

Syllabus

6. FUNDAMENTALS OF HEATING AND HEATING SYSTEMS

Course topic

Renewable energy sources

Number of credits

6 ECTS

Course responsible

Professional College of Tirana

Electro-Mechanics and Applied System Department

Prof. Dr. Marenglen Gjonaj (Head of Department)

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Study Programme: Ventilation and air conditioning technology

Course lecturer

Msc. Eng. MSc. Marjeta DHIMA

Prerequisites

Students must already have a general knowledge of Physics, Thermotechnics, and Fundaments of Hydraulics.

Learning outcomes

Upon course completion, students will be able to use the basic theoretical and practical concepts and laws of the subject, as well as have the necessary skills to solve the technical problems they will encounter while working in their profession, in terms of designing, assembling, using and maintaining heating plants and solar panels. Students will be able to use the basic theoretical and practical concepts and laws of the subject. They will have the necessary skills to solve the technical problems they will encounter while working in their profession.

Specifically, students will know, use and maintain the main heating systems and equipment, such as:

- boilers,
- radiant and convective heating radiators,
- floor and ceiling heaters,
- solar panels for hot water and sanitary water,
- tanks and their connection to the boiler,
- control and security devices, etc.

....

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Abstract

The course contains basic theoretical and practical information on heating bases and heating systems. Specifically, the basic concepts for heat and its transmission methods, the main requirements of thermal comfort, thermal losses and their analysis, heating systems and their components, solar panels, types, installation, operation and use for hot water and heating systems are treated.

The objective of the course is to enable students to use the basic theoretical and practical concepts and laws of the course and to have the necessary skills to solve technical problems that they will encounter while working in their profession.

For normal course development, students must have prior knowledge of General Physics, Thermotechnics and Basics of Hydraulics.

Course Objectives:

- 1. Heat and its transmission.
- 2. Laws of Thermodynamics.
- 3. Heat losses.
- 4. Thermal Balance and thermal insulation of the building.
- 5. Heat plants and their components.
- 6. Thermal power plants (boilers).
- 7. Solar panels.

COURSE CONTENT

Week Lectures topic

....

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Methodology: Direct communication, slide demonstration, activation through concrete examples, questions and discussions.

1 Program presentation, purpose, objectives. Basic knowledge of Thermotechnics. Technical thermodynamics, key definitions. The first law and the second law. pp. 1-3

2 Energy and its forms. Heat, basic concepts. pp.1-2

3 Heat transmission and its ways. Transmission by conduction, convection, radiation and composite. pp.3-11

4 Climate and thermal comfort. Comfort requirements and their analysis. Thermal comfort equation. pp.12-16

5 Termophysics of the building and its thermal balance. Thermal charges for heating. p. 17

6 Thermal losses with heat transfer from surrounding structures and their additions. Thermal insulation in the surrounding walls of the building. pp.17-22

7 Thermal losses from infiltrated air. Condensation phenomenon. Glasser Diagram. Energy consumption required for heating. Volumetric coefficient of thermal losses. pp. 22-23

8 Heating methods and their classification. Heat transporters. Water heating plants. Natural and forced circulation circuits. Delivery circuits and monotube circuits. Measurement of pipelines. pp. 24-35.

9 Heat emitting equipment. Basic criteria, design temperatures. Radiant and convective heaters (radiators). Types, their selection, calculation and placement. pp. 36-53

10 Thermal power plants. Boilers and their classification, burners, chimneys, circulating pumps, their selection and installation. Expansion vessels, their types, calculation and assembly. Security, protection and control equipment. pp. 54-68

11 Renewable energies, solar energy, solar radiation and its spread, solarization in Albania. Classification of solar thermal systems. pp. 69-73

12 Solar panels with thermosyphon and those with forced circulation as well as boilers integrated in the scheme. Functional schemes, analysis of components. pp. 64-82

13 Solar panel collector (mirror), water collector (boiler), antifreeze, piping and plumbing pp. 82-92

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

14 Working order for mounting solar panels, ways of mounting. Technical conditions in installation, technical warranty, service and maintenance of solar panels pp. 92-100

15 Exam

Week Exercises

1-15 The exercises cover the whole range of issues, in line with the Course Program.

Methodology: Demonstration of concrete examples and preparation by the students of the course assignment in accordance with the program.

Java Laboratory/Practice Plan

Methodology: Individual work and group work by topics. Laboratory work and teaching practices are finalized with the relevant report by each student.

2 Rules of technical security. Equipment, work tools, control and service. (Machine-scoop of Air conditioning technology in Professional College of Tirana)

4 Boilers, types, components and commissioning. (Machine-scoop of Air conditioning technology in Professional College of Tirana)

5 Scheme of connection of the boiler to the heat emitting equipment. Radiant and convective heating radiators, floor and ceiling heaters. (Machine-scoop of Air conditioning technology in Professional College of Tirana)

8 Connection of circulating pump, expansion vessel and safety control apparatus. Simulators no. 2. Experiments no. 4. (Machine-scoop of Air conditioning technology in Professional College of Tirana)

10 Installation of solar panel for hot water. Reservoir and its connection to the boiler. (Machinescoop of Air conditioning technology in Professional College of Tirana).

Using the Simulator (stand) Nr. 2 for hot water and sanitary water. Experiments No. 5 and 6. (Machine-scoop of Air conditioning technology in Professional College of Tirana)

14 Practical visit to a private business. Application of a heating system with boilers and solar panel.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

Teaching methods:

PowerPoint presentations, interactive communications with the audience.

Exercises according to the topics given in lectures, face to face class, lab practice etc.)

Attendance: of the learning process in lectures / exercises is compulsory at 60% (sixty) and is mandatory for laboratories up to 80% (eighty).

Assessment	
Active participation in exercises and Course Assignment	10 %
Laboratory / Practice	30 %
Final exam	60 %

Recommended reading

Basic Written lectures for students. Marjeta DHIMA, Tirana

Recommended "Thermotechnical plants (heating and air conditioning)1". R.ALUSHAJ, Tirana, 2012

Syllabus

7. ELECTRIC AND HYBRID VEHICLES

Course topic

Electric and hybrid vehicles

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Number of credits 6 ECTS Course responsible Professional Collage of Tirana Electro-Mechanical and Applied Systems Department Prof. Dr. Marenglen Gjonaj (Head of Department)

Course lecturer

Msc. Eng. Ilir Palushi

Msc. Eng. Arjan Kullolli

Prerequisites

General education in physics, mathematics, fluid mechanics etc.

Learning outcomes

This course consists of both theoretical and laboratory components. This course intends to provide students with basic operating concepts, types, and realizations of electric and hybrid vehicles. This course will address the advantages and increasing trends of the use of these vehicles, construction, and components of electric and hybrid vehicles, high voltage batteries, management systems of these vehicles, etc. Students will be able to know the latest trends of electric and hybrid vehicles, and their priorities, especially in relation to gas emissions, environmental protection and global warming. Students will be able to explain the main systems and aggregates that make up the vehicle and take care of electronic management system, battery charging methods, inverter, etc. They will perform periodic

checks, maintenance and safety measures in electric and hybrid vehicles and discuss and assess energy efficiency in electric and hybrid vehicles.

Abstract

At the end of this course, it is expected that students have received the necessary knowledge on the construction and operation of electric and hybrid vehicles and the trend of their development. Students will have the opportunity to practice the knowledge gained using special tools and measuring instruments in the course laboratory.

Content

During this course, students will have acquired basic concepts related to:

1. Knowledge of the phenomenon of global warming. What is global warming, its consequences, the greenhouse effect, the gases that affect global warming, the potential for global warming, and the measures that need to be taken to curb the phenomenon of global warming. (Lectures prepared by the course lecturer, recommended literature)

2. Renewable energy sources. Electricity generation through photovoltaic panels. Properties of photovoltaic circuits. Photovoltaic cells and their working principle. Structure, construction, and efficiency of photovoltaic cells. (Lectures prepared by the course lecturer, recommended literature)

3. Application of photovoltaic panels in electric vehicles. The way of their integration in the vehicle. Energy efficiency. International agreements on curbing the phenomenon of global warming. Regulatory and institutional legislation on global warming and renewable energy. (Lectures prepared by the course lecturer, recommended literature)

4. Electric vehicles. History and trend of electric vehicles. Types of electric and hybrid vehicles. Clean electric vehicles (EV), the advantages and disadvantages of electric vehicles compared to traditional vehicles. Construction and components that make up the clean electric vehicle. (Lectures prepared by the course lecturer, recommended literature)

5. High voltage batteries, their development, and types. Construction of high voltage batteries, nickel-metal hydrate batteries, lithium-ion batteries, and other types of batteries, their lifespan. Battery Management Unit (BMS). Battery recharging, charging modes, types, and features. Types of charging plugs and sockets. (Lectures prepared by the course lecturer, recommended literature)

6. Inverter solar photovoltaic panels (with integrated battery charger) for electric vehicles. Charging with a photovoltaic panel with inverter and integrated battery charger, dedicated to electric vehicles.

Electric vehicles with integrated photovoltaic panel.

Construction of the charging plant in a domestic setting. Inductive charging method. Inverter and power control module (PCM - Power Control Module) function, diagnose, their dismantlement and assembling in the vehicle. Electrical voltage in the electrical system of the vehicle (Lectures prepared by the course lecturer, recommended literature).

7. The electric motor in electric and hybrid vehicles. Ways of assembling them in the vehicle, vehicles with four electric motors. Construction and operation of electric motors, types, synchronous and asynchronous motors. (Lectures prepared by the course lecturer, recommended literature)

8. The braking system of an electric vehicle. Servo brake, vacuum pump. Power transmission, modes. Average consumption and cost per kilometer in electric vehicles. (Lectures prepared by the course lecturer, recommended literature)

9. Braking energy regenerative system. Conversion of kinetic energy into electricity. (Lectures prepared by the course lecturer, recommended literature)

10. Cooling, heating and air conditioning system in electric and hybrid vehicles. Construction and different ways of their realization and functioning. Components of the system, their construction and operation. (Lectures prepared by the course lecturer, recommended literature).

11. Hybrid vehicles, advantages and disadvantages compared to traditional vehicles. The main differences of hybrid vehicles from electric ones. Constructive scheme of hybrid vehicles and their classification. The main elements that make up the vehicle. Construction structure, types of hybrid vehicles. Hybrid vehicles with serial propulsion, parallel propulsion, and those with bimodal (mixed) propulsion. (Lectures prepared by the course lecturer, recommended literature.

12. Braking energy recovery. Braking energy recovery. Judgment on the choice of hybrid vehicle type. Hydrogen vehicles, operating scheme, components, hydrogen unit, batteries. Advantages and disadvantages compared to electric and hybrid vehicles. Energy efficiency in hybrid vehicles (Lectures prepared by the course lecturer, recommended literature).

13. Maintenance and repairs, electrical hazards concerning maintenance and repair of electric and hybrid vehicles. Potential risks. Safety rules for those working with electric and hybrid vehicles. Procedures to be performed to disconnect the high voltage current. (Lectures prepared by the course lecturer, recommended literature).

14. Work tools and personal protective equipment used in electric and hybrid vehicles. Energy efficiency and fuel consumption in electric and hybrid vehicles. (Lectures prepared by the course lecturer, recommended literature)

Teaching methods: PowerPoint presentations, through tables and interactive communications with the audience, face to face classes, lab practice.

-Exercises in accordance with the topics covered in lectures, demonstrations and various simulations, which will help students to better understand the construction, operation of systems and defects, controls, and repair of defects of electric and hybrid vehicles.

Laboratory work

LABORATORY No.1: Getting familiar with safety precautions in cases when working on electric and hybrid vehicles. Procedures to be performed to disconnect the high voltage current. Placing warning signs. Work tools and personal protective equipment used in electric and hybrid vehicles. Tension protective clothing etc.

LABORATORY No.2: Getting familiar with an electric vehicle (EV), advantages and disadvantages of electric vehicles. Getting familiar with the construction and components that make up the clean electric vehicle. Getting familiar with high voltage batteries of an electric vehicle. Construction and structure of high voltage battery. Meeting, unplugging the battery, assembling, and disassembling it. Battery Management Unit (BMS).

LABORATORY No.3: Getting familiar with the ways of recharging batteries. The battery charger integrated into the vehicle and the one integrated into the recharging column. Limits for recharging and discharging high voltage batteries. Types of charging sockets and plugs.

LABORATORY No.4: Production of electricity through photovoltaic panels. Properties of photovoltaic circuits. Photovoltaic cells and their working principle. Structure, and construction of photovoltaic cells. Their application in the vehicle.

LABORATORY No.5: Inverter and power control module (PCM - Power Control Module) function, diagnostic methods, assembly, and disassembly. The electric motor in electric and hybrid vehicles. Ways of setting it up in the vehicle. Diagnosis, disassembly-assembly of the engine. Braking system and power transmission.

LABORATORY No.6: Cooling, heating, and air conditioning system in electric and hybrid vehicles. The components that make up the system, their construction, and operation. Dismantling and assembling system elements. Vehicle braking system and power transmission

LABORATORY No.7: Constructive scheme of a hybrid vehicle. The main elements that make up the vehicle. Structure of the hybrid vehicle (with serial propulsion, parallel propulsion, or bimodal (mixed) propulsion. Main differences between hybrid vehicles and electric ones.

Assessment

The course grade consists of these components:

10% - Participation and activation in exercises

30% – Laboratory work

60% - Final exam

Literature

Basic literature Lectures prepared by the course lecturer

Recommended reading Emanuele Biagetti "Veicoli elettrici e ibridi"

Ilirjan Malollari "Alternativa te energjise se riperteritshme"

4.BACHELOR COURSES OF UET

ENGINE - List of Courses - EUT

N				Category	
0	Name of the course	Study program	Lecturer	Mandatory / Elective	New/ Update d
1	Introduction to Energy	BA Industrial Engineering	Prof. Dr.Angjelin Shtjefni/ Hasimin Keci	Mandatory	New
2	Introduction to Turbomachine	BA Industrial Engineering	Prof. Dr. Andonaq Londo/ Hasimin Keci	Mandatory	New
3	Science and Materials Technology in the field of Energy	BA Industrial Engineering	Dr. Eng. Kreshnik Hakrama	Mandatory	Updated
4	Electrical Plants Systems and Energy	BA Industrial Engineering	Msc. Jani Petro	Elective	Updated
5	Mechanical characteristics of Materials in the field of Energy	BA Industrial Engineering	Dr. En <mark>g. Kr</mark> eshnik Hakrama	Elective	Updated
6	Energy and Environment	BA Industrial Engineering	Dr. F <mark>atri M</mark> orina	Elective	New

National and Kapodistrian University of Athens

asca

cre thi dev

Syllabus

1. "Introduction to energy"

Name of the course Introduction to energy Course topic Energy and its resources Duration: 6 ECTS (15 weeks) Participants of the course: BSc students in industrial engineering Educational background: General education in physics, mathematics etc. Course responsible Department of Engineering and Architecture Course lecturer / tutor Prof. Dr. Eng. Angjelin Shtjefni Msc. Eng. Hasimin Keçi

Educational Prerequisites

Previous knowledge on technical physics, fluid mechanics etc.

HELLENIC REPUBLIC National and Kapodistrian University of Athens

cre thi dev

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

- Knowledge about types of resources of energy.
- Knowledge about systems of energy.

Skills:

- Compare the resources of energy.
- Calculate main coefficients of the system of energy.

Competence:

- Analysis about the possibilities of use of each resource of energy in Albania
- Analysis of the system of production and transmission of energy

Abstract

Today the problem of energy is very important. This course aims to give the students the concepts of the energetical system. During this course the students are going to learn for the main resources of energy that can be used in Albania.

Content

1. Introduction to energy.

In this topic the students are going to know the main concepts that are going to be treated

during the course.

2. Sources of renewable of energy, types of sources of renewable energy.

In this topic the students are going to learn about the sources of renewable energy.

BENECON

3. Energy of water.

In this topic the students are going to learn about the use of water in the production of energy.

4. Main equipment's that are used to produce energy from water.

In this topic the students are going to learn about the main equipment's that are used to produce energy from water.

5. Wind as a source of energy

In this topic the students are going to learn about the wind as a source of energy.

6. Solar energy

During this topic the students are going to use about the solar energy and its use in Albania.

7. Photovoltaic energy

In this topic the students are going to learn about the multiuse of photovoltaic energy

8. Geothermal energy

In this topic the students are going to learn about the geothermal energy and the application of this type of energy in Albania.

9. Biomass

In this topic the students are going the concept of biomass and how can we produce energy form biomass.

10. Conventional sources of energy

In this topic the students are going to learn the concept of conventional sources of energy and the use of this type of sources in Albania.

11. Main indicators of TEC's

During this topic the students are going to learn the main indicators of TEC's and how can we calculate them.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

12. Conventional sources of energy vs. renewable sources of energy

....

KU LEUVEN

cre thi dev

During this topic the students are going to learn how to compare conventional sources with renewable sources of energy.

13. Energy system reliability indicators.

During this topic the students are going to learn which are the energy systems reliability indicators and how to calculate them.

14. The role of legislation in energy developments, electricity developments in Albania and the functioning of the ERE (power regulatory entity).

In this topic the students are going to learn about the role of legislation in energy developments in Albania.

Teaching methods

During this course are going to be used classic teaching methods that aims to develop an interactive lesion.

Assessment

The course grade consists of these components:

- 10% Participation during seminars
- 20% Final project
- 30% Middle term exam
- 40% Final exam

Recommended reading

Soft S., Power system economics, IEE Wiley, 2002

Harris Ch., Electricity markets, pricing, structures and economics, Finance Wiley, 2006

BENECON

Paloka A., Burimet e rinovueshme të energjisë, SHBLU, 2010. Berisha Xh., Burimet e energjisë, 2011

Syllabus

- 2. "Introduction to turbomachine"
- Name of the course
- Introduction to turbomachines
- Course topic
- Turbomachines
- Duration:
- 6 ECTS (15 weeks)
- Participants of the course:
- BSc students in industrial engineering
- Educational background:
- General education in physics, mathematics, fluid mechanics etc.
- Course responsible
- Department of Engineering and Architecture
- Course lecturer / tutor
- Prof. Dr. Eng. Andonaq Londo
- Msc. Eng. Hasimin Keçi

BENECON

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Universiteti

Educational Prerequisites

Previous knowledge on technical physics, fluid mechanics etc.

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

- Knowledge about types of turbomachines
- Knowledge about main indicators of turbomachines.

Skills:

- Compare turbomachines among them.
- Calculation of main indicators of these machines

Competence:

Analysis of main indicators values

Abstract

During this course students are going to learn the importance and the use of turbomachines. Also, they are going to learn the main indicators that we use for the analysis of a turbomachine and how they are calculated.

Content

1. Differential equations for 1 dimensional flow.

In this topic the students are going to know the main differential equations for 1 dimensional flow.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

2. Determination of flow velocity.

In this topic the students are going to learn about the flow velocity.

3. Maximum flow.

In this topic the students are going to learn about maximum flow and how can it be calculated.

- 4. Grid. Grid parameters.
- In this topic the students are going to learn about the grid and grid parameters.
- 5. Axial compressor
- In this topic the students are going to learn about the axial compressor and its indicators.
- 6. Axial turbine
- During this topic the students are going to use about the axial turbine and its indicators.
- 7. Axial asymmetric flow
- In this topic the students are going to learn about the axial asymmetric flow and its features
- 8. Gas turbines
- In this topic the students are going to learn about the gas turbines and its features
- 9. Pumps
- In this topic the students are going to learn about pumps and their features
- 10. Hydraulic turbines
- In this topic the students are going to learn the hydraulic turbines and its features
- 11. Blade construction

During this topic the students are going to learn about blade construction

12. Radial grid

....

KU LEUVEN

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

During this topic the students are going to learn about radial grid and its features

13. Axial grid of blades.

During this topic the students are going to learn what is an axial grid and the features of axial grid of blades

14. Hydraulic turbines

In this topic the students are going to learn about hydraulic turbines and its features

Teaching methods

During this course are going to be used classic teaching methods that aims to develop an interactive lesion.

Assessment

The course grade consists of these components:

- 10% Participation during seminars
- 20% Final project
- 30% Middle term exam
- 40% Final exam

Recommended reading

- Londo A., Turbomakinat, SHBLU, 2014
- Cengel Y., Cy,bala J., Fluid mechanics, fundamentals and applications, McGraw Hill, ISBN 0072472367

Wright T., Gerhart P., Fundamentals of turbomachines, Springers, 2016, ISBN 9789402403480

Syllabus

3. "Science and materials technology in the field of energy"

Name of the course

Science and materials technology in the field of energy

Course topic

Materials that are used in the field of energy

Duration:

6 ECTS (15 weeks)

Participants of the course:

BSc students in industrial engineering

Educational background:

General education in physics, mathematics, chemistry etc.

Course responsible

Department of Engineering and Architecture

Course lecturer / tutor

Dr. Eng. Kreshnik Hakrama

Educational Prerequisites

Previous knowledge on technical physics, fluid mechanics etc.

HELLENIC REPUBLIC National and Kapodistrian University of Athens

cre thi dev

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

Knowledge about types of materials that are used in the field of energy

Knowledge about features of materials that are used in the field of energy

Skills:

Compare materials that are used in the field of energy.

Calculation of main indicators of these materials

Competence:

Analysis of materials that are used in the field of energy

Abstract

This program describes the mechanical properties of materials that are used in the field of energy, mechanisms of their reinforcement the destruction of these materials etc.

Content

Classification of materials

In this topic the students are going to know the classification of materials that are used in the field of energy

Defect of materials.

In this topic the students are going to learn about the defects of materials, how to diagnose and fix them.

Diffusion and factors affecting it.

HELLENIC REPUBLIC National and Kapodistrian University of Athens EST, 1837

BENECON

In this topic the students are going to learn about diffusion and factors affecting it

Mechanical properties of materials

In this topic the students are going to learn about the mechanical properties of materials

Dislocations and reinforcements mechanisms

During this topic the students are going to use about the dislocations and reinforcements mechanisms.

Destruction of materials

In this topic the students are going to learn about the destruction of materials.

Fatigue, creep and the factors affecting them.

In this topic the students are going to learn about the fatigue, creep and the factors affecting them.

Metal alloys and applications in the field of energy.

In this topic the students are going to learn about metal alloys and their applications in the field of energy.

Manufacturing of metals used in the field of energy

In this topic the students are going to learn the forming operations, casting, welding etc.

Structures of ceramics used in the field of energy

During this topic the students are going to learn about crystalline and non-crystalline structure, silicate glass etc.

Manufacturing of ceramics used in the field of energy.

During this topic the students are going to learn about processes of manufacturing of ceramics used in the field of energy.

Polymers used in the field of energy.

During this topic the students are going to learn about plastics and polymers used in the field of energy.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Types of polymers

....

KU LEUVEN

In this topic the students are going to learn about types of polymers that are used in the field of energy.

Composites

In this topic the students are going to learn about types of composites that are used in the field of energy.

Teaching methods

During this course are going to be used classic teaching methods that aims to develop an interactive lesion.

Assessment

The course grade consists of these components:

- 10% Participation during seminars
- 20% Final project
- 30% Middle term exam
- 40% Final exam

Recommended reading

William D. Calister Jr, Materials science and engineering an introduction 10th edition, 2018, John Willey & Sons

Spring 2010 MSE 2009 – Section-1, Introduction to the science and engineering of materials

Syllabus

4."Electrical plant systems and energy"

Name of the course Electrical plant systems and energy Course topic Electrical plant systems and energy, systems, plants. Duration: 6 ECTS (15 weeks) Participants of the course: BA Industrial Engineering Educational background: Open to students enrolled in Bachelor program Course responsible Department of Engineering and Architecture Course lecturer / tutor Msc. Eng. Jani Petro


Educational Prerequisites

Previous understanding of mathematics, energy, physics, electronics etc.

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

- Knowledge on plants in general.
- Knowledge in electrical plants.

Skills:

- Analyse advantages and disadvantages of each type of plant.
- Analysis of problems that are related with electrical plants.
- Solve different types of problems related with plants.

Competence:

• Making decision related with electrical plants.

Abstract

This course aims to give the students the basic knowledges about electrical plants. During this course students are going to learn what is a electrical plant, from what its composed, what are the typical problems related with them and how to solve these problems.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

Content

- 1. Introduction to electrical plants.
- In this topic the students are going to be presented with electrical plants.
- 2. Power plants.

KU LEUVEN

In this topic the students are going to learn what is a power plant, its characteristics, its main indicators and how to calculate them.

3. Turbines and engines.

In this topic the students are going to learn about the role that the turbines and engines have in the work of an electrical plant. They are also going to know the main characteristics of engines and turbines used in this type of plants.

4. Electrical system of plants.

In this topic the students are going to learn the characteristics of the electrical system of plants. They are going to learn the main indicators of this system, how to calculate them and how to analyse based on the values of these indicators.

5. Instruments and control.

In this topic the students are going to learn about the process of control in the work of these systems and the instruments used to do this control.

6. Nuclear power systems.

In this topic the students are going to learn what is a nuclear power system, how it functions, what are its main indicators, what do they tell us about, how to calculate them and how to analyse based on their values.

7. Repetition.

In this topic it is going to be done a repetition of all main concepts treated in previous topics.

8. Hydropower.

In this topic the students are going to be introduced with the concept of hydropower, where is it used, its advantages and disadvantages.

9. Alternative sources of energy 1.

In this topic the students are going to learn and discuss about alternative sources of energy and why they are so important nowadays.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

....

KU LEUVEN

10. Alternative sources of energy 2.

In this topic the students are going to learn and discuss about alternative sources of energy and why they are so important nowadays.

11. International security standards.

In this topic the students are going to learn what is a security standard and what are international security standards.

12. Environmental control.

In this topic the students are going to learn about that electrical plants have in the environment and why should this impact be controlled and how can we control it.

13. Security system.

In this topic the students are going to learn what is the security system, why it is important and what are the means we can use to ensure it.

14. Quality control.

In this topic the students are going to learn what is the important of quality of the plants and the procedure that must be followed to ensure it.

Teaching methods

During the course interactive teaching methods are going to be used to make sure that the students will understand all the concepts that are going to be treated.

Assessment

The course grade consists of these components:

10% - Active participation in the seminar hours.

20% - Final project.

30% - Middle term exam.

40% - Final exam.

Recommended reading

Nag. P. K. – Power plant engineering 3rd edition, Tata McGraw Hill Publishing Companies, ISBN 9780070648159.

Syllabus

5 "Mechanical characteristics of materials in the field of energy"

Name of the course

Mechanical characteristics of materials in the field of energy

Course topic

Material used in the field of energy, mechanical characteristics, columns, rotations, displacements etc.

Duration:

6 ECTS (15 weeks)

Participants of the course:

BSc. Students in civil engineering

Educational background:

General education in mathematics, physics, rational mechanics, material resistance etc.

Course responsible

Department of Engineering and Architecture

Course lecturer / tutor

Dr. Eng. Kreshnik Hakrama

Educational Prerequisites

Previous understanding of mathematics, physics, electronics, rational mechanics etc.

Learning outcomes

Upon successful completion of this course students should be able to:

Knowledge:

- Knowledge on mechanics of materials used in the field of energy;
- Knowledge in mechanical characteristics of materials used in the field of energy;
- Knowledge of main mechanical indicators of materials used in the field of energy

Skills:

- Calculate main mechanical indicators of materials used in the field of energy;
- Analysis of the values of the main mechanical indicators of materials used in the field of energy;

Competence:

• Making decision based on the analysis of the values of main mechanical indicators of the materials used in the field of energy.

Abstract

It is very important for engineers to know the mechanical characteristics of materials used in the field of energy. During this course the students are going to learn about the mechanical indicators of these materials, analyze these values and making decision based on these calculations.

Content

1. Introduction to the mechanics of materials.

In this topic the students are going to be presented with the mechanics of materials.

2. Strain and deformation

In this topic the students are going to learn the concepts of strain and deformation, mathematical indicators of strain and deformation, how to calculate them and how to analyze them.

3. Axially loaded rods.

In this topic the students are going to learn the concept of axially loaded rods.

4. Twisting

In this topic the students are going to learn the concept of twisting, it mathematical indicators, how to calculate and analyze them.

5. Shear forces and bending moments.

In this topic the students are going to learn about shear forces and bending moments, their mathematical indicators, how to calculate and analyze them.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

6. Bending deformation (basic issue).

In this topic the students are going to learn about basic issues of bending deformation.

7. Bending deformation (advanced issue).

In this topic the students are going to learn about advanced issues of bending deformation.

8. Analysis of rotation and displacement.

....

In this topic the students are going to learn the process of analysis of rotation and displacement.

9. Applications of rotations and displacements.

In this topic the students are going to be introduced with the applications of rotations and displacement.

10. Beam curvatures.

In this topic the students are going to learn about beam curvatures, their mathematical indicators, how to calculate and analyze them.

11. Statically undefined beams.

In this topic the students are going to learn about statically undefined beams, their mathematical indicators, how to calculate and analyze them.

12. Columns in eccentric printing.

In this topic the students are going to learn about columns in eccentric printing and their calculation.

13. Geometric characteristics of cross sections.

In this topic the students are going to learn about geometric characteristics of cross sections and their calculation.

14. Section of tasks.

In this topic the students are going to learn about section of task.

Teaching methods

During the course interactive teaching methods are going to be used to make sure that the students will understand all the concepts that are going to be treated.

Assessment

The course grade consists of these components:

10% - Active participation in the seminar hours.

20% - Final project. 30% - Middle term exam. 40% - Final exam. Recommended reading Fagu M., Rezistenca e materialeve, SHBLU, 1974.

Gere J. M., Barry J. G., Mechanics of materials, 2013, ISBN 9781111577742

Syllabus

6."Energy and Environment"

Name of the course:

Energy and Environment

Course topic:

Energy, Climate Change and Sustainability

Duration:

6 ECTS (15 weeks)

Participants of the course:

BA Industrial Engineering

Educational background:

Open to students enrolled in Bachelor program

Course responsible:

Department of Engineering and Architecture

Course lecturers:

Dr. Fatri Morina

Educational prerequisites

No specific prerequisites. Open to students enrolled in Bachelor program

Learning outcomes

In terms of learning outcomes, after the completion of this course students should be able to:

• Knowledge

o Understand the Environment: Resources, Climate, Energy and Sustainability.

o Understand the Climate System: What is Climate Change, Carbon Cycle and the Relationship between the Land, the Ocean and the Atmosphere?

o Have knowledge on Effects of Climate Change on Ecosystems.

o Have knowledge on Energy and Environmental Policies

• Skills

o uses basic knowledge about different forms of production, transport and use of electricity and heating /cooling to solve simple problems.

o to use the knowledge to explain the relationship between the use of energy resources and environmental impacts

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

o to analyze the consequences of today's energy consumption

o to evaluate energy and environmental issues and policies

....

KU LEUVEN

Competence

o has basic competence regarding environmental impacts arising from different energy carriers and technical solutions

o reflects and evaluate the environmental impact of energy production and the relationship between energy production, consumption and climate change

o to independently analyze problems and be able to critically assess and provide recommendations.

Abstract

This course introduces students to the fundamentals of energy and environment, with a specific focus on Energy, Climate Change and Sustainability. This course covers a wide range of topics from understanding the Environment: Resources, Climate, Energy and Sustainability to energy and environmental policies. The course pays particular attention to the energy-environment nexus, including the challenge of low-carbon development in an era of climate change.

Content

I. Understanding the Environment: Resources, Climate, Energy and Sustainability. Understanding the environment and our role in it. Environmental issues.

II. Energy: Basics, concepts and qualification. What is energy? Form and sources of energy.

III. The climate system. What is Climate Change? The Global System Concept. The Carbon Cycle and the Hydrologic Cycle.

IV. Climate Change. Fossil fuels and Climate Change. Contributors to Climate Change and pollution.

V. Results of Climate Change on ecosystems. Forests, deserts, wildfire, marine environment, sealevel rise.

HELLENIC REPUBLIC

University of Athens

National and Kapodistrian

VI. Energy-Environment nexus I. Energy resources, production, consumption and impacts.

....

KU LEUVEN

- VII. Energy-Environment nexus II. Energy resources, production, consumption and impacts.
- VIII. Scenario Analysis I.
- IX. Renewable energy resources. Solar, geothermal, wind, hydropower, bioenergy.
- X. Environmental policies and actors.
- XI. Energy policies and actors.
- XII. Political and geopolitical consideration. Energy and environment issues implications.
- XIII. Economic dimension of energy and environment.
- XIV. Public perception. What the public think about energy and environment threats.
- XV. Scenario analysis II.

Teaching methods

A combination of lecture and seminar, in an interactive environment. PowerPoint materials, quizzes, individual and group work, and case studies.

Assessment

The course grade consists of these components:

- 10% Active Participation in seminars
- 20% Final project/ Essay
- 30% Mid-term exam
- 40% Final exam

Recommended reading

HELLENIC REPUBLIC National and Kapodistrian University of Athens

BENECON

Kerr, J. (2018) Introduction to energy and climate: developing a sustainable environment. Taylor & Francis Botkin, D. and Keller, E. (2014) Environmental Science: Earth as a Living Planet. John Wiley and Sons. Yergin, D. (2011). The Quest: Energy, Security, and the Remaking of the Modern World, Penguin

